
Testing for Tensions 
Between Datasets

David Parkinson 
University of Queensland

In collaboration with  
Shahab Joudaki (Swinburne)



Outline
• Introduction 

• Statistical Inference 

• Methods 

• Linear models 

• Example using WL and CMB data 

• Conclusions



What is Probability?
• In 1812 Laplace published Analytic 

Theory of Probabilities 

• He suggested the computation of "the 
probability of causes and future 
events, derived from past events” 

• “Every event being determined by the 
general laws of the universe, there is 
only probability relative to us.” 

• “Probability is relative, in part to [our] 
ignorance, in part to our knowledge.” 

• So to Laplace, probability theory is 
applied to our level of knowledge Pierre-Simon Laplace



Comparing datasets
• As there is only one Universe (setting aside the 

Multiverse), we make observations of un-repeatable 
‘experiments’  

• Therefore we have to proceed by inference 

• Furthermore we cannot check or probe for biases by 
repeating the experiment - we cannot ‘restart the 
Universe’ (however much we may want to) 

• If there is a tension (i.e. if two data sets don’t agree), 
can’t take the data again. Need to instead make 
inferences with the data we have



Rules of Probability
• We define Probability to have 

numerical value 
• We define the lower bound, of 

logical absurdities, to be zero, 
P(∅)=0 

• We normalize it so the sum of the 
probabilities over all options is 
unity, ∑P(Ai)≡1

A

B

Sum Rule: P(A∪B)=P(A)+P(B)-P(A∩B) 

Product Rule: P(A∩B)=P(A)P(B|A)=P(B)P(A|B)



Bayes Theorem
• Bayes theorem is easily derived from the product 

rule 

• We have some model M, with some unknown 
parameters θ, and want to test it with some data D 

• Here we apply probability to models and 
parameters, as well as data

P(A|B) =
P(B|A)P(A)

P(B)

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

priorposterior
likelihood

evidence



Model Selection
• If we marginalize over the parameter uncertainties, 

we are left with the marginal likelihood, or evidence 

• If we compare the evidences of two different models, 
we find the Bayes factor 

• Bayes theorem provides a consistent framework for 
choosing between different models

E=P(D|M)=⌠⌡P(D|θ,M)P(θ|M)dθ

P(M1|D)

P(M2|D)
=

P(D|M1)P(M1)

P(D|M2)P(M2)

Model prior

likelihoodevidence

evidence

prior

Model posterior



Occam’s Razor

• Occam factor rewards the 
model with the least 
amount of wasted 
parameter space (“most 
predictive”)

Best fit likelihood
Occam factor

E =

Z
d✓P (D|✓,M)P (✓|M)

⇡ P (D|✓̂,M)⇥ �✓

�✓



Bayesian Model 
Comparison

• Jeffrey’s (1961) scale:      

• If model priors are equal, evidence ratio and 
Bayes factor are the same

Difference Jeffrey 
(1961)

Trotta 
(2006)

Odds
Δln(E)<1 No evidence No 

evidence
3:1

1<Δln(E)<2.5 substantial weak 12:1
2.5<Δln(E)<5 strong moderate 150:1

Δln(E)>5 decisive strong >150:
1



Information Criteria
• Instead of using the Evidence (which is difficult 

to calculate accurately) we can approximate it 
using an Information Criteria statistic 

• Ability to fit the data (chi-squared) penalised by 
(lack of) predictivity 

• Smaller the value of the IC, the better the model 
• Bayesian Information Criterion (Schwarz, 1978) 

- point estimate approximation to the evidence 

• k is the number of free parameters and N is the number of data points

BIC = �2(✓̂) + k lnN



Deviance
• Deviance Information Criterion (Spielgelhalter et al. 2002) 

comes from cross-entropy between prior and posterior 

• If cross-entropy is small, distance minimised (i.e. model is 
predictive) 

• DIC can be evaluated from MCMC chain 

•Here c is the complexity, which is equal to number 
of well measured parameters

DKL (P (✓|D,M)||P (✓|M)) =

Z
P (✓|D,M) log


P (✓|D,M)

P (✓|M)

�

DIC = �2(✓̂) + 2c

c = �2
⇣
DKL(P (✓|D,M)P (✓|M))� dDKL

⌘
= �2(✓)� �2(✓̄)



Tensions
• Tensions occur when 

two datasets have 
different preferred 
values (posterior 
distributions) for some 
common parameters 

• This can arise due to 

• random chance 

• systematic errors 

• undiscovered physics
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Diagnostic statistics
• Need to diagnose not if the model is 

correct, but if the tension is significant 
• Simple test 𝜒2 per degree of freedom 

• Equivalent to p-value test on data 

• Raveri (2015): the evidence ratio 

• Joudaki et al (2016): change in DIC
C(D1, D2,M) =

P (D1 [D2|M)

P (D1|M)P (D2|M)

�DIC = DIC(D1 [D2)�DIC(D1)�DIC(D2)



Linear evidence

• Evidence in linear case dependent on  
1.likelihood normalisation 
2.Occam factor (compression of prior into posterior) 
3.Displacement between prior and posterior 

•In linear case, final Fisher information matrix is sum of prior and 
likelihood (F=L+Π) 
•If prior is wide, Π is small (so displacement minimised), but 
Occam factor larger

1

2 3
P (D|M) = L0

|F |�1/2

|⇧|�1/2
exp


�1

2

(✓TLL✓L + ✓T⇡⇧✓⇡ � ¯✓TF ¯✓)

�



Simple linear model



Diagnostics II: The 
Surprise

• Seehars et al (2016): the ‘Surprise’ statistic, 
based on cross entropy of two distributions 

• Cross entropy given by KL divergence 

• Surprise is difference of observed KL 
divergence relative to expected 
• where expected assumes consistency 

S ⌘ DKL (P (✓|D2)||P (✓|D1))� hDi

DKL (P (✓|D2)||P (✓|D1)) =

Z
P (✓|D2) log


P (✓|D2)

P (✓|D1)

�



Linear tension

• Displacement terms equivalent to `Surprise’ - 
relative entropy between two distributions 

• Occam factor independent of tensions 
• Tensions most manifest in first term - 

likelihood ratio

P (D1+2|M)

P (D1|M)P (D2|M)
=

L1+2
0

L1
0L2

0

⇥ |F1+2|�1/2

|F1|�1/2|F2|�1/2
⇥ displacement terms



DIC vs Surprise
• Simple 5th order polynomial 

model, with second data set 
offset from the first 

• Complexity of each individual 
data, and also combined data, 
is the same 

• Both measure the 5 free 
parameters well 

• DIC only changes due to 
worsening of 𝜒2 

• The ΔDIC goes from negative 
(agreement) to positive 
(tension) as the offset increases 

• Odds ratio of agreement

I(D1, D2) ⌘ exp{��DIC(D1, D2)/2}



Application to lensing 
data

• In Joudaki et al 
(2016) they 
compared the 
cosmological 
constraints from 
Planck CMB data 
with KiDS-450 
weak lensing data 

• Including curvature 
worsened tension, 
but allowing for 
dynamical dark 
energy improved 
agreement

Model T(S8) ΔDIC

ΛCDM

— fiducial systematics 2.1σ 1.26 Small tension

— extended systematics 1.8σ 1.4 Small tension

 — large scales 1.9σ 1.24 Small tension

Neutrino mass 2.4σ 0.022 Marginal case

Curvature 3.5σ 3.4 Large tension

Dark Energy (constant w) 0.89σ -1.98 Agreement

Curvature + dark energy 2.1σ -1.18 Agreement



Summary
• We can estimate the relative probability of tensions between 

data sets using ratios of model likelihood (evidence) 
• The Deviance Information Criteria is a simple method to 

evaluate tensions, being sensitive to likelihood ratio, but 
calibrated against parameter confidence regions 

• Surprise is alternative approach to evaluating tensions, also 
using cross-entropy, though much more sensitive (perhaps 
overly) 

• Comparing tension between CMB and weak lensing 
tomography, we find these data sets give better agreement 
when dynamical dark energy is included in the model


