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Decoupling of Neutrino

Pr =Egifd3pf(p)E(p)= 1+;(141) 3P,

* The contribution from relativistic particles to the energy
density.

* If they are in equilibrium with cosmic plasma, FD/BE
distribution can be used.

e But, neutrino decoupled at around a few MeV, followed
by e-e+ annihilation, which causes heating photons.

* For instantaneous decoupling approximation:
/T, = 1/4)"” =1.40102
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Fig. 1. Evolution of 8py,(ma)/p0, (mg), for a neutrino mass
mqy = 1 eV (see text for further details).

Mangano+ (2002)




Decoupling of Neutrino
T,/T,=(11/4)" =1.40102

4/3
T( 4
pr= D8 [ d'Pf(P)E(p)=|1+ N |P;
pd _ S\11 _
* The contribution from relativistic particles to the energy

density.

* If they are in equilibrium with cosmic plasma, FD/BE
distribution can be used.

e But, neutrino decoupled at around a few MeV, followed
by e-e+ annihilation, which causes heating photons.

* |nstead of instantaneous decoupling approximation,
* In reality, there is some distortion in f(p), Nﬁ =3.046
e

Mangano+ (2005)




After decoupling, starts to stream freely

Neutrino decoupling Last Scattering Surface

| m,, =1.0eV —
m, =0.8 eV

0.333333 [---omm- oo oo

equation of state

Fix the shape of P(k) with O < m, < leV
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Effect of Massive neutrino on LSS

Yvonne Y. Y. Wong (2011)
* Free-streaming scale of massive neutrino with

mass m,, : Joro ~ 42 l+z eV Mpe ! h
Q . \m

m,0 %

 Structure formation smaller than this scale k > &,
is suppressed, which ..

provides the access
to the neutrino mass

Pas(k) (I\/Ipc3)

in cosmology.
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Background Physics

— How affect Galaxy Clustering In
redshift space?

— we restrict out analysis to the standard case, where
departure of N_¢ from 3 is solely due to neutrino
heating by e-e+ annihilation, which gives The effective
number of relativistic species N4 = 3.046.

— Neutrino mass < 1 eV was relativistic before LSS.
Therefore, we can fix the clustering feature (=shape of
power spectrum) at LSS using Planck experiment result.

— Distortion (scale-dependent damping) from the fixed
clustering feature by massive neutrino with m <1 eV
provides the access to the neutrino mass in cosmology.
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Theoretical model on
P(k) in Redshift Space Distortion(RSD)

* Improvement in e oo
2D Power spectrum in redshift space™|

Q

— Kaiser(1987) 5100 :
Ploer (ko) = By () + 20 B (k) + i P (k) | -

iser

— Scoccimarro(2004)
P eimarro Uis 1) = { Poy (5) + 204° Pogy (k) + 1 Pog (k) } G (kpuor,)
— Taruya, Nishimichi, and Saito (Improved)(2010)

Pl (ko) = { Py (k) + 2007 Py (k) + 11 Pog (k) + Ak, 1) + Bk, t)} G™ (ko)

-> Higher order correction



Theoretical model on
P(k) in Redshift Space Distortion(RSD)

PO (k,u) = [[dxe** (7" A, A, )

Taruya, Nishimichi, and Saito (2010) Where

j1 = —iku
A=u(r)-u (r)
A, =0(r)+V. u(r)

A3 = 5(’7 ) + Vzuz (? ) Zheng & Song (2016)

PO = [ &' exple () hx((eahs) +(eM4,) (e 4,) |

Paa(k)+2M2P5@(k)+M4P®@(k) }

_ GFOG(kMGp){
+A(k,u)+B(k,u)+T (k,u)+ F(k,u)



Theoretical model on
P(k) in Redshift Space Distortion(RSD)
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Zheng & Song (2016)

PO = [ &' exple () hx((eahs) +(eM4,) (e 4,) |

Paa(k)+2M2P5@(k)+M4P®@(k) }

=GF0G k
( Wp){+A(k,u)+ B(k, 1) + T (k. j)-+F(K, 1)
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Cut-off to consider
Current status of RSD modeling
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P u(k) (Mpc®/h?)

AP a(k)(%)

Is TNS model to calculate
Non-linear mapping

including ?
A_;’N 8x f,=0.16 for m, =0.3eV
Q2 :
where f, = —- with Q =031 and h=0.68
" Yvonne Y. Y. Wong (2011)

Q. =035 — m, =00¢eV

— m,=03eV
1 3 L L L L L L . .
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P"a(k) (Mpc’/n?)

AP (k)(%)

P u(k) (Mpc®/h?)

Is TNS model to calculate
Non-linear mapping
including ?
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Effective growth VS Scale-dep. growth

* Depending on how the effect from massive
neutrino is parameterized, the constraint on
neutrino mass is affected (See grey contours).
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Effective growth VS Scale-dep. growth

* Depending on how the effect from massive
neutrino is parameterized, the constraint on
neutrino mass is affected.
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Bias effect on
neutrino mass constraint

* Beyond the linear bias, b1?

Pg’&S (k)= blzPéé (k) + 2b2b1Pb2,5 (k)+ b22Pb22 (k) = bland b2: local bias

+ 2bs2b1Pbs2,5 (k) + 2b2bs2Pb2s2 (k) + bs22Pbs22 (k)
+2b_,b,, 05 (k)P" (k)

b,,, and by:
non-local
bias

d 36]
(27)

where P, (k)= f

3})lin (q)le(l k _ é’ |)FZSPT (é,k . é)

Pon(k) === [-LL_pin(q)[ P (g)- P (1K - )]

27 2x)

McDonald & Roy (2009)

2017 CosKASI Gill-Marin+ (2016)




Bias effect on
neutrino mass constraint

e Scale-dependency of bias b(k) doesn’t affect
neutrino mass constraint in scales of interest.

P ss(k)= b’ P, (k)+ 2b,bP,, s(k)+ b;P,,, (k)

1.0
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£ 0.6}
> 0.4}
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ﬂg Testing Methodology

* When we apply our methodology to the
simulation (SDSS DR11 mock catalogue without

massive neutrino), true value reproduced.
| | | | | | | | | | | | | | | | | | |
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RESUlt on (DAaH_l Gb,GH,O' mv)
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Result on (b,2,,,0,,m,)+0, in 68% C. L.
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Future Work

* Precision in Theoretical prediction

— To prepare forthcoming data with higher
precision, theoretical prediction for nonlinearity in
redshift space should be more elaborated up to
higher k where the effect of massive neutrino
comes in.

— Alternatively, templates could be supplied by
neutrino simulations. (similar manner to Zheng &
Song 2016)



Future Work

* Precision in Theoretical prediction

e with full-scale information from CMB instead
of one distance scale

* using SDSS DR12.



Summary

 The effect of massive neutrino with mass < 1 eV, which
decoupled when it was relativistic & became non-
relativistic after LSS, affect anisotropic galaxy clustering
(SDSS DR11 CMASS at z_4 = 0.57), which let us access

neutrino mass to give m,, = O.l9eV_B(?i278 in 68% C.L.

— TNS model is available for massive neutrino with k__ <0.1.
— Our results are conservative in change of local bias.

— Free form of Dark energy doesn’t help us to constrain neutrino
mass, but consistent with the previous works.

— Cosmological constant with CMB distance measure can help us
for neutrino mass.

— Type of credible/confidence Interval doesn’t change much
reporting our results.
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