Gravity from Cosmology

Pedro G. Ferreira
University of Oxford

The state of General Relativity in 1957

"There exists... one serious difficulty, and that is the lack of experiments. Furthermore, we are not going to get any experiments, so we have to take the viewpoint of how to deal with the problems where no experiments are available. ... the best viewpoint is to pretend that there are experiments and calculate. In this field we are not pushed by experiments but pulled by imagination."

"The elegant logic of general relativity theory, and its precision tests, recommend GR as the first choice for a working model for cosmology. But the Hubble length is fifteen orders of magnitude larger than the length scale of the precision tests, at the astronomical unit and smaller, a spectacular extrapolation."

Jim Peebles, IAU 2000

(Baker, Psaltis \& Skordis 2014)

Big puzzles ...

small inconsistencies.

- Lamb shift
- Wu parity violation experiment
- Fitch-Cronin CP violation
- Precession of perihelion of Mercury

The Theory

Einstein Gravity

$$
\frac{\text { Curvature }}{16 \pi G} \int d^{4} x \sqrt{-g}[R(g)-2 \Lambda]+\int d^{4} x \sqrt{-g} \mathcal{L}(g, \text { matter })
$$

Lovelock's theorem (197I):"The only second-order, local gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Einstein field equations with a cosmological constant."

See also Hojman, Kuchar \& Teitelboim (1976)

Jordan-Brans-Dicke Theory

One free parameter

Cassini (Bertotie ea a 2003) $\omega_{\mathrm{BD}}>40,000$
Einstein-Dilaton-Gauss-Bonnet
Cascading gravity

Randall-Sundrum I \& II

Higher dimensions

Generalisations

Gauss-Bonnet

Lovelock gravity

arXiv:

1310.1086
1209.2117

I 107.0491
| | 10.3830
of $S_{\text {EH }}$
Teves - New degrees of freedom

Some degravitation scenarios

Conformal gravity

$$
f(G)
$$

General $R_{\mu \nu} R^{\mu \nu}$, $\square R$,etc.

Extra degrees of freedom

 metric \longrightarrow add $\phi, A^{\mu}, f_{\alpha \beta}$ etc.$4 \mathrm{D} \longrightarrow$ e.g. in 5 dimensions:

$$
g_{A B}=\left(\begin{array}{cc}
g_{\alpha \beta} & A_{\alpha} \\
A_{\beta} & \phi
\end{array}\right)
$$

2nd order \longrightarrow e.g. if $\int d^{4} x \sqrt{-g} f(R)$ define $\phi=\frac{d f}{d R}$.

Background $d s^{2}=g_{\mu \nu}^{(0)} d x^{\mu} d x^{\nu}=-d t^{2}+a^{2}(t)(d \vec{x})^{2}$

$$
G_{\alpha \beta}=8 \pi G T_{\alpha \beta}+\underline{U_{\alpha \beta}}
$$

where $U_{\alpha \beta}\left(a, \dot{a}, \rho_{M}, P_{M}, \phi, \cdots\right) \quad P_{X}=\underline{w} \rho_{X}$
Homogeneity and isotropy
BOSS, Anderson et al 2013.

$$
U_{\alpha \beta}=8 \pi G\left(\begin{array}{cc}
\rho_{X} & 0 \\
0 & a^{2} P_{X} \delta_{i j}
\end{array}\right)
$$

Bianchi identities

$$
\nabla^{\alpha}\left[8 \pi G T_{\alpha \beta}+U_{\alpha \beta}\right]=0
$$

$\frac{\delta T}{T} \sim 10^{-5}$

linear perturbation theory

Linear Perturbations

$$
\begin{aligned}
g_{\alpha \beta} & =g_{\alpha \beta}^{(0)}+h_{\alpha \beta} \\
\rho_{M} & =\bar{\rho}_{M}\left(1+\delta_{M}\right) \\
\phi & =\phi_{0}+\delta \phi
\end{aligned}
$$

Construct most general quadratic action which has:

- upto 2 nd order in time derivatives
- $h_{\alpha \beta} \rightarrow h_{\alpha \beta}+\nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}$ where $x^{\alpha} \rightarrow x^{\alpha}+\xi^{\alpha}$
- inherits symmetries of the background

Linear Perturbations

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g^{(0)}}\left[\alpha_{1} \nabla^{\mu} h^{\alpha \beta} \nabla_{\mu} h_{\alpha \beta}+\alpha_{2} \nabla^{\mu} h^{\alpha \beta} \nabla_{\alpha} h_{\mu \beta}\right. \\
& \left.+\alpha_{3} \nabla^{\mu} h \nabla^{\alpha} h_{\mu \alpha}+\alpha_{4} \nabla^{\mu} h \nabla_{\mu} h+\alpha_{5} \nabla^{\mu} h_{\mu \alpha} \nabla^{\alpha} \delta \phi+\cdots\right]
\end{aligned}
$$

Properties:

- $\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ are functions of t
- $\alpha_{X}(t)$ depend on transf. props of extra fields
- clear mapping theory $\longleftrightarrow \alpha_{X}(t)$
- clear physical interpretation of each $\alpha_{X}(t)$

Examples:

- Scalar-tensor (Horndeski): five $\alpha_{X}(t)$
- Vector-tensor (Einstein-Aether, Proca): nine $\alpha_{X}(t)$
- Tensor-tensor (Bigravity, massive gravity): three $\alpha_{X}(t)$

$N(k) \propto k^{3}$
More statistical power

The Data

A preferred length scale- the horizon

$$
\mathcal{H}^{-1} \equiv\left(\frac{\dot{a}}{a}\right)^{-1} \propto \tau \simeq 3000 h^{-1} \mathrm{Mpc}
$$

Most surveys $\ll \tau$ so that $k \tau \gg 1$
Newtonian potentials: $h_{\alpha \beta}=2\left(\begin{array}{cc}\Phi & 0 \\ 0 & a^{2} \Psi \delta_{i j}\end{array}\right)$
Einstein equations: $-k^{2} \Phi=4 \pi G \underline{\mu} a^{2} \rho \Delta$

$$
\underline{\gamma} \Psi=\Phi
$$

(μ, γ) are rational functions of $\alpha_{X}(t)$ and k^{2}

We measure matter and light.

Growth rate

$$
f(k, a)=\frac{d \ln \delta_{M}(k, a)}{d \ln a}
$$

f satisfies a simple ODE

$$
\frac{d f}{d \ln a}+q f+f^{2}=\frac{3}{2} \Omega_{M} \xi
$$

with $q=\frac{1}{2}\left[1-3 w\left(1-\Omega_{M}\right)\right]$ and $\xi=\frac{\mu}{\gamma}$

Weak Lensing

$$
\begin{aligned}
\text { shear } & \simeq \int_{0}^{\chi} \nabla_{\perp}^{2}[\Phi+\Psi]\left(\chi^{\prime}\right)\left[\chi^{\prime}\left(1-\frac{\chi^{\prime}}{\chi}\right)\right] d \chi^{\prime} \\
\text { shear } & \sim \Sigma \equiv \mu\left(1+\frac{1}{\gamma}\right)
\end{aligned}
$$

Sarah Bridle lectures (2003)

Joudaki et al 2016

Lensing of CMB

Planck 2015

Constrain $\alpha_{X}(t)$ in scalar-tensor theories
Parametrize: $\alpha_{X}=b_{X}+c_{X} \frac{\Omega_{\mathrm{DE}}(z)}{\Omega_{\mathrm{DE}}(z=0)}$

$$
\sigma\left(\alpha_{X}\right) \sim 0.5
$$

Bellini et al 2016

Jordan-Brans-Dicke Theory

One free parameter

$S=\int d^{4} x \sqrt{-g}\left[\phi R-\frac{\omega_{\mathrm{BD}}}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi+V+\mathscr{L}_{M}\left[g_{\mu \nu}, \varphi\right]\right\}$

Cassini ${ }_{\text {(Bertotti et al 2003) }} \omega_{\mathrm{BD}}>40,000$
Planck (Avilez \& Skordis 2015) $\omega_{\mathrm{BD}}>1,000$

The Challenge

Systematics: non-linear physics

$N(k) \propto k^{3}$
More statistical power

Systematics: non-linear physics

baryonic feedback

Sembloni et al 2012

Systematics: non-linear physics

Jennings, Baugh \& Pascoli 2015

Systematics: screening

Newtonian potential
GM
r

Fifth force
$\phi=-\frac{\tilde{G} M}{r} e^{-m r}$
Chameleon: $m=m(\rho)$
$m \rightarrow \infty$ when $\rho \gg \rho_{S}$
Vainshtein: $\quad \tilde{G} \rightarrow 0$ when $r \ll r_{V}$

The Future

The Future is now

Data Type	Now	Soon	Future
Photo-z:LSS (weak lensing)	DES, RCS, KIDS	HSC	LSST, Euclid, SKA, WFIRST
Spectro-z (BAO, RSD, ...)	BOSS	DESI,PFS,HETDEX, Weave	Euclid, SKA
SN la	HST, Pan-STARRS, SCP, SDSS, SNLS	DES, J-PAS	JWST,LSST
CMB/ISW	WMAP, Planck	AdvACT	Simons Array, Stage IV, LiteBird
sub-mm, small scale lensing, SZ	ACT, SPT,Planck, ACTPol,SPTPol,	PolarBear,Spider, Vista	CCAT, SKA
X-Ray clusters	ROSAT, XMM, Chandra	XMM, XCS, eRosita	
HITomography	GBT	Meerkat, Baobab, Chime, Kat 7	SKA

Jordan-Brans-Dicke Theory

One free parameter

$S=\int d^{4} x \sqrt{-g}\left[\phi R-\frac{\omega_{\mathrm{BD}}}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi+V+\mathscr{L}_{M}\left[g_{\mu \nu}, \varphi\right]\right\}$

Cassini (Bertotti et al 2003) $\omega_{\mathrm{BD}}>40,000$

Planck (Avilez \& Skordis 2015) $\omega_{\mathrm{BD}}>1,000$

"An important contribution of the general theory of relativity to cosmology has been to keep out theologians by a straightforward application of tensor analysis."

E. Schucking

D. Alonso, L.Amendola, M.Amin,T. Baker, R.Bean, E. Bellini, C. Blake, P. Bull, P. Brax, S. Daniels, A. Davies, D. Leonard, G. Gubitosi, P. G. Ferreira, J. Gleyzes,W. Hu, L. Hui, C, Heymans, S. Joudaki, K. Koyama, M. Kunz, M. Lagos, D. Langlois, E. Linder, L. Lombrisier, D. Mota, A. Narimani, J. Noller, J. Peacock, F. Piazza, D. Pogosian, D. Sapone, D. Scott, I. Sawicki, A. Silvestri, F. Simpson, A. Taylor, F.Vernizzi, H.Winther, J. Zuntz, ...

