

Higgs inflation by flat potential and a radiative seesaw mechanism

Toshinori MATSUI (도시노리 마츠이)

in collaboration with Shinya KANEMURA

University of Toyama

Phys. Lett. B **723** (2013) 126, including some recent developments

In this talk,

- We discuss Higgs inflation, which explains inflation with minimal number of particles.
- Flat potential scenario is testable at future CMB experiments.
- In the framework of the radiative seesaw model with a multi-Higgs structure, we can solve not only dark matter, neutrino masses but also inflation.
- We mention testability of our model at collider experiments.

1.1.Beyond the SM

- The SM is established by discovering the Higgs boson.
- However, we cannot explain neutrino oscillation, dark matter (DM) and baryon asymmetry of the Universe.

Radiative neutrino mass generation

 Z_2 sym. \rightarrow stabilizes DM + forbids generating m, at the tree level

$$\langle \phi^0 \rangle \quad \langle \phi^0 \rangle$$

$$(m_{\nu})_{ij} \simeq \frac{c_{ij}}{(16\pi^2)^N} \frac{v^2}{M}$$

 $(\nu_L)^c$ L. M. Krauss, S. Nasri, M. Trodden, PRD **67**, 085002 (2003) E. Ma, PRD **73**, 077301 (2006)

(N-loop diagram) M. Aoki, S. Kanemura, O. Seto, PRL **102**, 051805 (2009) ...

We consider the simplest model (Ma model).

1.2.Ma model

Φ_2 , V_R : Z_2 -odd

$$\mathcal{L}_{\text{Ma}} = \mathcal{L}_{\text{SM}} + |D_{\mu}\Phi_{2}|^{2} - V_{\text{IDM}}(\Phi_{1}, \Phi_{2}) + \mathcal{L}_{\text{Ma Yukawa}} + \mathcal{L}_{\text{Majorana}}$$
 E.Ma, PRD **73** 077301 (2006)

$$V_{\text{IDM}} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$

Masses of scalar boson

$$m_{h}^{2} = \lambda_{1}v^{2},$$

$$m_{H^{\pm}}^{2} = \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2},$$

$$m_{H}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} + \lambda_{5})v^{2},$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}.$$

$$\Phi_1 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v+h) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H^0 + iA^0) \end{pmatrix}$$

h: CP-even (SM-like) Higgs boson

Masses of scalar boson are determined by λ_{1-5} , μ_{2}

1.3.Ma model

Φ_2 , v_R : Z_2 -odd

$$\mathcal{L}_{\text{Ma}} = \mathcal{L}_{\text{SM}} + |D_{\mu}\Phi_{2}|^{2} - V_{\text{IDM}}(\Phi_{1}, \Phi_{2}) + \mathcal{L}_{\text{Ma Yukawa}} + \mathcal{L}_{\text{Majorana}}$$
 E.Ma, PRD **73** 077301 (2006)

$$V_{\rm IDM} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^\dagger \Phi_2) (\Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^\dagger \Phi_2)^2 + h.c.]$$

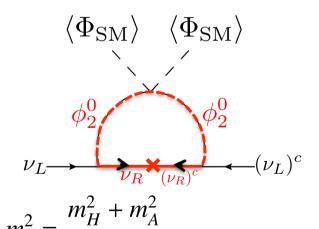
Neutrino masses

$$\mathcal{L}_{\text{Ma Yukawa}} = h_{ij} \overline{(L_L)_i} \Phi_2^c (\nu_R)_j + h.c.$$

$$\mathcal{L}_{\text{Majorana}} = \frac{1}{2} M_i \overline{(\nu_R)_i^c} (\nu_R)_i + h.c.$$

1-loop suppressed masses

$$(m_{\nu})_{ij} = \frac{\lambda_5 \nu^2}{8\pi^2} \sum_{k} \frac{h_{ik} h_{jk} M_k}{m_0^2 - M_k^2} \left[1 - \frac{M_k^2}{m_0^2 - M_k^2} \ln \frac{m_0^2}{M_k^2} \right] \quad m_0^2 = \frac{m_H^2 + m_A^2}{2}$$



Neutrino Yukawa is constrained by the neutrino oscillation data.

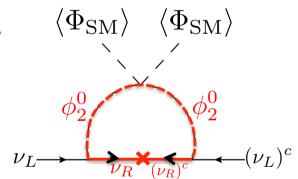
1.4.Ma model

 Φ_2 , v_R : Z_2 -odd

$$\begin{split} \mathcal{L}_{\text{Ma}} &= \mathcal{L}_{\text{SM}} + |D_{\mu}\Phi_{2}|^{2} - V_{\text{IDM}}(\Phi_{1},\Phi_{2}) + \mathcal{L}_{\text{Ma Yukawa}} + \mathcal{L}_{\text{Majorana}} \quad \text{E.Ma, PRD 73 077301 (2006)} \\ V_{\text{IDM}} &= \mu_{1}^{2}|\Phi_{1}|^{2} + \mu_{2}^{2}|\Phi_{2}|^{2} + \frac{1}{2}\lambda_{1}|\Phi_{1}|^{4} + \frac{1}{2}\lambda_{2}|\Phi_{2}|^{4} + \lambda_{3}|\Phi_{1}|^{2}|\Phi_{2}|^{2} + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}\lambda_{5}[(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.] \end{split}$$

Dark matter

- DM stability is explained by Z₂ symmetry.
- •DM candidate is the lightest one of neutral Z_2 -odd particles (H^0 , A^0 , v_R).



DM is constrained by relic abundance and direct detection.

2.1.What we want to do

- We explain Higgs inflation with the structure of the Ma model.
- We search the effects to TeV scale physics from parameters which satisfy inflation constraints.
- We explore our model by CMB experiments,
 DM direct search and collider experiments.

2.2.Inflation

- Standard cosmology is very successful to explain the observations.
- Additionally, we need inflation to solve horizon problem and flatness problem.
 Guth(1981), Sato(1981)

Higgs inflation

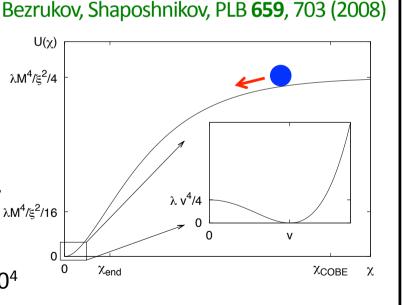
Higgs boson as inflaton

$$\frac{\mathcal{L}_J}{\sqrt{-g_J}} = \mathcal{L}_{\rm SM} - \frac{1}{2}M_P^2R - \underline{\xi}H^{\dagger}HR$$

Coupling of the Higgs field to gravity MA4/E2/16

$$\longrightarrow U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right) \right)^{-2}$$

ξ~10²



The advantage of Higgs inflation is testability via Higgs physics.

2.3.CMB experiments

The result of Planck (2015) excludes BICEP2 data(2014).

 $r_{0.002}$ < 0.10 (95% C.L., Planck TT + lowP + BKP)

Planck Collaboration, arXiv:1502.02114 [astro-ph.CO]

Future CMB satellite "LiteBIRD" (2020-).

r>0.01 (10 σ discovery), sensitivity: δ r<0.001 http://litebird.jp

Prediction of Higgs inflation

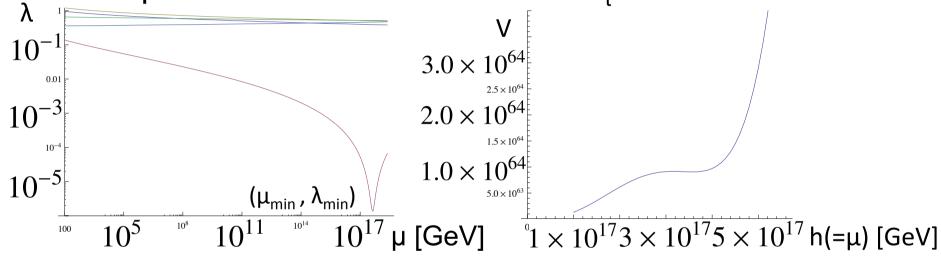
- -Original scenario Bezrukov, Shaposhnikov, PLB 659, 703 (2008) predicts r ~0.003.
- -In the case of flat potential Hamada, Kawai, Oda, Park, PRL112, 241301 (2014), the large r (>0.01) can be obtained by the λ ~10⁻⁶(@ μ ~10¹⁷GeV).

Higgs inflation with the flat potential can be tested at the CMB experiment.

2.4. Flat potential scenario

Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)

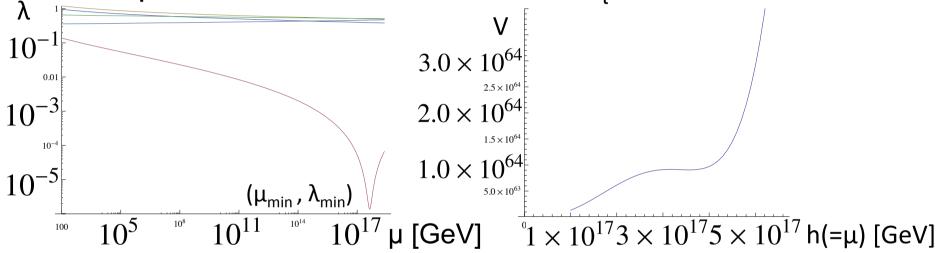
Flat potential can be realized with m_t = 171.5353GeV.



2.4. Flat potential scenario

Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)

Flat potential can be realized with m_t = 171.5353GeV.



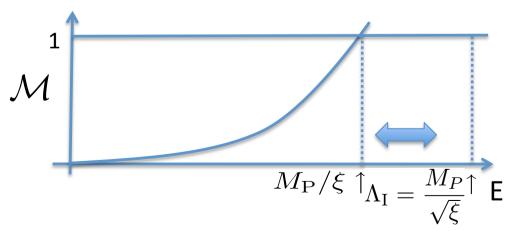
- Higgs inflation is explained by this potential.
- \rightarrow The smallness of ξ in this scenario solves perturbative unitarity
- →To satisfy vacuum stability, small top mass is required

Theoretical problem of Higgs inflation

C.P.Burgess et al., JHEP **0909**, 103(2009) C.P.Burgess, H.M.Lee, M.Trott, JHEP **1007**, 007(2010)

• Perturbative unitarity is broken $@\Lambda_U \equiv \frac{M_P}{\xi}$ because the coupling of the Higgs field to gravity contributes to the Higgs-gauge scatterings.

$$\mathcal{M}(W_L \chi_h \to W_L \chi_h) = \mathcal{M}(W_L h \to W_L h) + \underline{a} \frac{E^2}{\Lambda_U^2} + b$$



 χ_h is Higgs field of Einstein frame

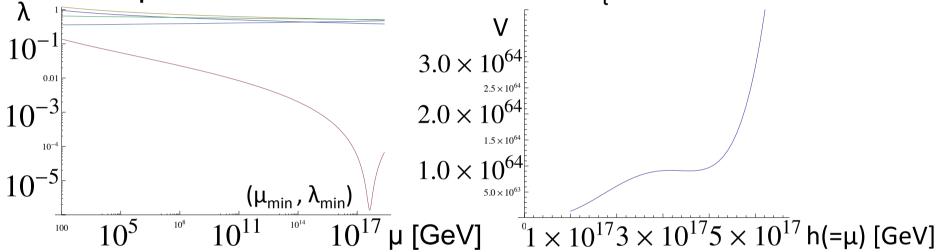
<Solutions>

- 1 Introducing heavy singlet scalar G.F.Giudice, H.M.Lee, Phys.Lett.B **694**, 294 (2011)
- 2 The scenario of flat potential Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)

2.4. Flat potential scenario

Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)

Flat potential can be realized with m_t = 171.5353GeV.

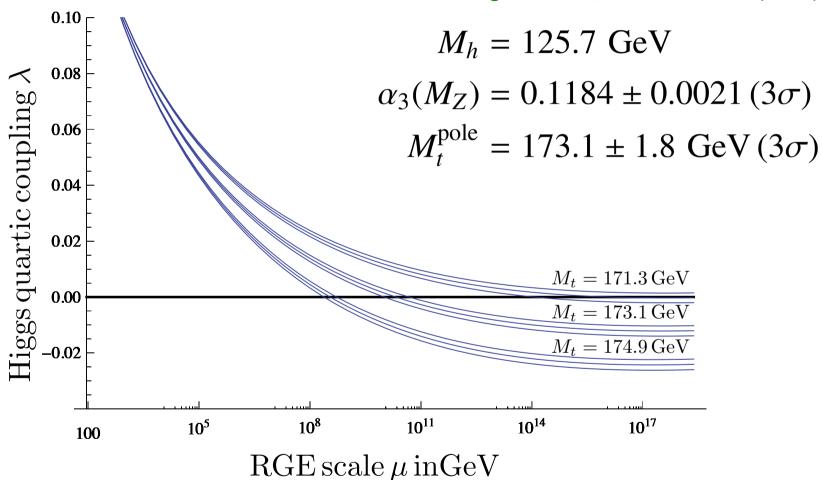


- Higgs inflation is explained by this potential.
- \rightarrow The smallness of ξ in this scenario solves perturbative unitarity \bigoplus .

ξ~20

Vacuum stability in the SM

G.Degrassi et al., JHEP 1208, 098 (2012)

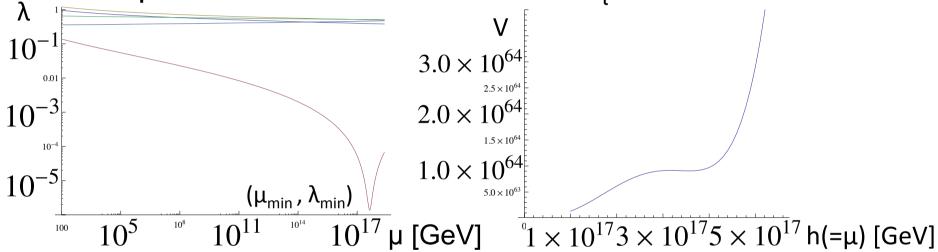


Running of the Higgs self coupling is sensitive to the top mass!

2.4. Flat potential scenario

Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)

Flat potential can be realized with m_t = 171.5353GeV.



- Higgs inflation is explained by this potential.
- \rightarrow The smallness of ξ in this scenario solves perturbative unitarity \oplus .
- →To satisfy vacuum stability, small top mass is required 😥.

ξ~20

m_t~171GeV

3.1.In our analysis,

- We consider multi-Higgs model to relax the constraint of vacuum stability.
- The Ma model has this structure.
- We calculate β functions to determine the mass spectrum.

3.2. Higgs inflation with Ma model

S.Kanemura, T.M., T.Nabeshima, Phys. Lett. B 723, 126 (2013)

$$\frac{\mathcal{L}_{\rm J}}{\sqrt{-g_{\rm J}}} = \mathcal{L}_{\rm Ma} - \left(\frac{1}{2}M_{\rm pl}^2 + \xi_1|\Phi_1|^2 + \xi_2|\Phi_2|^2\right)R$$

 Φ_2 , V_R : Z_2 -odd

$$\mathcal{L}_{\text{Ma}} = \mathcal{L}_{\text{SM}} + |D_{\mu}\Phi_{2}|^{2} - V_{\text{IDM}}(\Phi_{1}, \Phi_{2}) + \mathcal{L}_{\text{MaYukawa}} + \mathcal{L}_{\text{Majorana}}$$
 E.Ma, PRD **73** 077301 (2006)

$$\mathcal{L}_{\text{Ma}} = \mathcal{L}_{\text{SM}} + |D_{\mu}\Phi_{2}|^{2} - V_{\text{IDM}}(\Phi_{1}, \Phi_{2}) + \mathcal{L}_{\text{Ma Yukawa}} + \mathcal{L}_{\text{Majorana}} \quad \text{E.Ma, PRD 73 077301 (2006)}$$

$$V_{\text{IDM}} = \mu_{1}^{2}|\Phi_{1}|^{2} + \mu_{2}^{2}|\Phi_{2}|^{2} + \frac{1}{2}\lambda_{1}|\Phi_{1}|^{4} + \frac{1}{2}\lambda_{2}|\Phi_{2}|^{4} + \lambda_{3}|\Phi_{1}|^{2}|\Phi_{2}|^{2} + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}\lambda_{5}[(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.]$$

Higgs inflation with IDM

J.-O.Gong, H.M.Lee, S.K.Kang, JHEP 1204, 128(2012)

$$U(\chi,\theta) = \frac{\lambda_{\rm eff}(\mu)}{4\xi_{\rm eff}^2} \left(1 - \exp\left(-\frac{2\chi}{\sqrt{6}}\right)\right)^2 \left[1 + \delta\cos(2\theta)\right] \xrightarrow{\text{Scalar fields as inflatons}} \frac{\text{Scalar fields as inflatons}}{\cdot (h^0, H^0) \rightarrow \chi : \text{mixed CP-even scalar}} \cdot A^0 \rightarrow \theta : \text{CP-odd scalar}$$

$$\lambda_{\text{eff}}(\mu) \equiv \frac{\lambda_1(\mu)\lambda_2(\mu) - \lambda_L(\mu)^2}{2} \frac{\lambda_1(\mu)\xi_2^2 + \lambda_2(\mu)\xi_1^2 - 2\lambda_L(\mu)\xi_1\xi_2}{(\lambda_2(\mu)\xi_1 - \lambda_L(\mu)\xi_2)^2},$$

$$\xi_{\text{eff}}(\mu) \equiv \frac{\lambda_1(\mu)\xi_2^2 + \lambda_2(\mu)\xi_1^2 - 2\lambda_L(\mu)\xi_1\xi_2}{\lambda_2(\mu)\xi_1 - \lambda_L(\mu)\xi_2}, \quad \lambda_L(\mu) = \lambda_3(\mu) + \lambda_4(\mu)$$

We consider flat potential scenario in the Ma model.

3.3. Constraints on the parameters

$$\begin{split} \frac{\mathcal{L}_{\rm J}}{\sqrt{-g_{\rm J}}} &= \mathcal{L}_{\rm Ma} - \left(\frac{1}{2}M_{\rm pl}^2 + \xi_1 |\Phi_1|^2 + \xi_2 |\Phi_2|^2\right) R \\ \lambda_{\rm 1-5}, \xi_{\rm 1-2}, \mu_{\rm 1-2} \\ \mathcal{L}_{\rm Ma} &= \mathcal{L}_{\rm SM} + |D_{\mu}\Phi_2|^2 - V_{\rm IDM}(\Phi_1, \Phi_2) + \mathcal{L}_{\rm Ma\,Yukawa} + \mathcal{L}_{\rm Majorana} \quad \text{E.Ma, PRD 73 077301 (2006)} \end{split}$$

- $V_{\text{IDM}} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$
 - Flat potential scenario: $\lambda_{eff}(\mu_{min})$ ~10⁻⁶ Hamada, Kawai, Oda, Park, PRL112, 241301 (2014)
 - •CMB observation: $\xi_{\rm eff} = 5 \times 10^4 \sqrt{\lambda_{\rm eff}}$
 - *Stable minimum condition for inflation, Vacuum stability
 J.-O.Gong, H.M.Lee, S.K.Kang, JHEP 1204, 128(2012)
 - The cases of DM scenario of Ma model
 - $1m_A (\sim m_h/2) \sim 65 \text{GeV}(\Omega h^2), \lambda_{hAA} (=\lambda_3 + \lambda_4 \lambda_5) < 0.02 (DD)$

LUX Collaboration, PRL **112**, 091303 (2014)

 $2m_{H}(^{m}) > 800 \text{GeV}(\Omega h^{2})$

A.Goudelis, B.Herrmann, O.Stål, JHEP 1309, 106 (2013)

 $3m_{vR1}$ =10-700GeV(LFV), λ_5 ~10⁻¹¹-4×10⁻¹⁰(m_v , Ωh^2)
A.Vicente, C.E.Yaguna, JHEP **1502**, 144 (2015)

4.1.Results

- <u>Light scalar DM</u> ...This case does not satisfy flat potential scenario.
- However, the scenario of original paper (large ξ, small r) is possible.

 S.Kanemura, T.M, T.Nabeshima, Phys. Lett. B **723** 126 (2013)
- →Perturbative unitarity is achieved by introducing heavy singlet scalar.

T.M., arXiv:1405.5700 [hep-ph]

- Heavy scalar DM ... This case may be difficult to test at DM direct searches.
- →In this talk, we don't consider this case.
- Right handed neutrino DM
- Mass spectrum is determined by the calculation of β function.
- \rightarrow Benchmark: $(\lambda_2, \lambda_3, \lambda_4) = (0.1897, 0.4244, -0.4990)$ satisfies conditions.

$$\mu_2 = 120 \text{GeV} \rightarrow (m_{H^{\pm}}, m_H, m_A) = (165, 110, 110) \text{GeV}$$

$$\mu_2 = 200 \text{GeV} \rightarrow (m_{H^{\pm}}, m_H, m_A) = (230, 194, 194) \text{GeV}$$

$$\mu_2 = 500 \text{GeV} \rightarrow (m_{H^{\pm}}, m_H, m_A) = (513, 498, 498) \text{GeV}$$

[µ₂ is a free parameter.]

IDM@LHC E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D **81**, 035003 (2010)

• H⁺H⁻ is many background and mass difference of HA is too small.

Testing at the LHC is difficult.

E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D 81, 035003 (2010)

• H⁺H⁻ is many background and mass difference of HA is too small.

Testing at the LHC is difficult.

E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D 81, 035003 (2010)

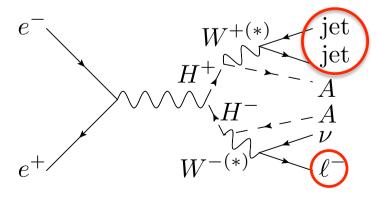
• H⁺H⁻ is many background and mass difference of HA is too small.

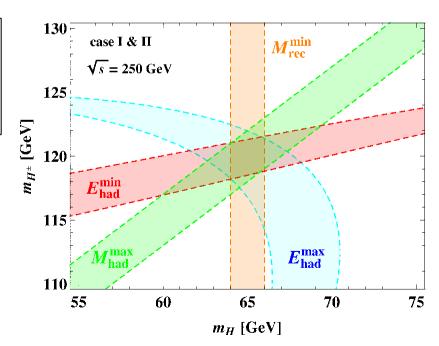
IDM@ILC M.Aoki, S.Kanemura, H.Yokoya, Phys. Lett. B725, 302 (2013)

- Mass spectrum is determined by ±2GeV accuracy.
- •Upper bound of $m_{H_{+}}$ is $\sqrt{s}/2$.

$$m_{H^{\pm}} = 120 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 11 \text{fb@} \sqrt{s} = 250 \text{GeV}$$

 $m_{H^{\pm}} = 120 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 79 \text{fb@} \sqrt{s} = 500 \text{GeV}$
 $m_{H^{\pm}} = 160 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 53 \text{fb@} \sqrt{s} = 500 \text{GeV}$



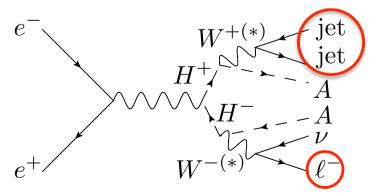


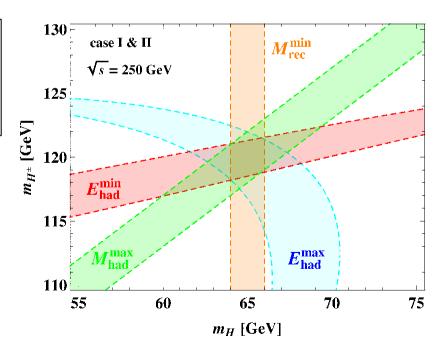
Testing at the LHC is difficult. E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D 81, 035003 (2010)

- m_{H+} can be measured at the ILC. mass difference of HA is too small. • H+H⁻ is many b
- ID IVI. Aoki, S. Kanemura, H. Yokoya, Phys. Lett. B**725**, 302 (2013)
- Mass spectrum is determined by ±2GeV accuracy.
- •Upper bound of $m_{H_{+}}$ is $\sqrt{s}/2$.

$$m_{H^{\pm}} = 120 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 11 \text{fb@} \sqrt{s} = 250 \text{GeV}$$

 $m_{H^{\pm}} = 120 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 79 \text{fb@} \sqrt{s} = 500 \text{GeV}$
 $m_{H^{\pm}} = 160 \text{GeV} \rightarrow \sigma_{H^{+}H^{-}} = 53 \text{fb@} \sqrt{s} = 500 \text{GeV}$





Testing at the LHC is difficult.

E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D 81, 035003 (2010)

"H+H- is many back mass difference of HA is too small.

m_{H+} can be measured at the ILC.

ID IVI. Aoki, S. Kanemura, H. Yokoya, Phys. Lett. B725, 302 (2013)

- Mass spectrum is determined by ±2GeV accuracy.
- •Upper bound of m_{H_+} is $\sqrt{s}/2$.

LFV constraints of v_{R1} as DM in Ma model

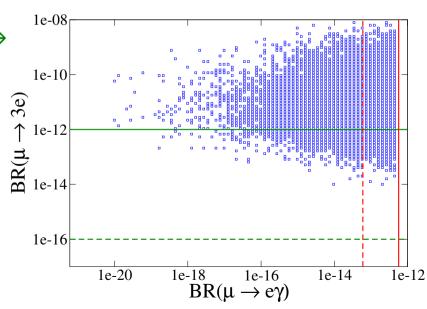
A.Vicente, C.E.Yaguna, JHEP **1502**, 144 (2015)→

• The case of v_{R1} as DM in Ma model is tested by searching LFV processes.

<Assumptions>

-No co-annihilation with scalar bosons

 $-m_{vR3}$ <10TeV



Testing at the LHC is difficult. E.Dolle, X.Miao, S.Su, B.Thomas, Phys. Rev. D 81, 035003 (2010)

mass difference of HA is too small. • H+H⁻ is many m_{H+} can be measured at the ILC.

Dividite IVI. Aoki, S. Kanemura, H. Yokoya, Phys. Lett. B725, 302 (2013)

- Mass spectrum is determined by ±2GeV accuracy.
- Upper hound v_{R1} as DM can be excluded by LFV experiments.

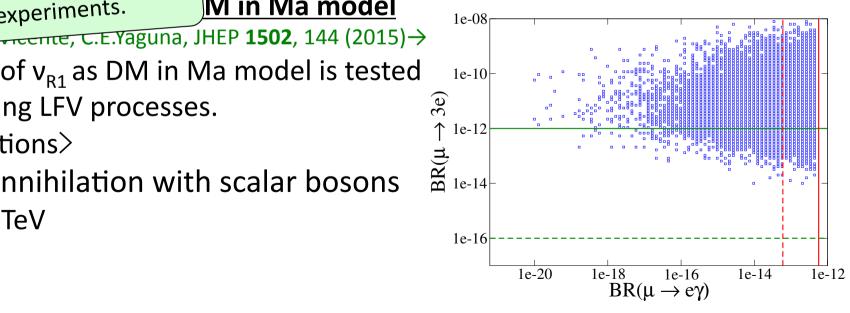
M in Ma model

• The case of v_{R1} as DM in Ma model is tested by searching LFV processes.

<Assumptions>

-No co-annihilation with scalar bosons

 $-m_{vR3}$ <10TeV



4.3.Testability of our scenario

Testing at the LHC is difficult.

 m_{H+} can be measured at the ILC.

 v_{R1} as DM can be excluded by LFV experiments.

Our scenario in the Ma model satisfying the inflation constraints can be tested at collider experiments.

$$(\lambda_2, \lambda_3, \lambda_4) = (0.1897, 0.4244, -0.4990)$$

Such a inflation scenario can be tested at CMB experiments.

Conclusions

- We discuss Higgs inflation with Ma model which explains DM and Neutrino masses at the same time.
- For such multi-Higgs models, the constraint from vacuum stability can be relaxed.
- Our model can be testable by future CMB experiments, ILC and LFV experiments.

Future prospect

- Resonant leptogenesis with the heavy scalar DM of Ma model is studied. S.Kashiwase, D.Suematsu, PRD 86, 053001 (2012)
- \rightarrow It may be possible to realize leptogenesis satisfying the inflation constraints. (v_{Ri} do not contribute to the running of $\lambda_i(\mu)$.)

Thank you for your attention! 감사합니다!