Electro WeakDarkMatter: SRT effect vs indirect detections

Based on 1210.6104 with J.C. Park and S. Scopel & work in progress with J.C.Park

KOREA NSTITUTE FOR ADVANCED STUDY

EUNG JIN CHUN

CosKASI Dark Matter Workshop 2015, June 9-11

Outline

Introduction to general EWDM:

- Arbitrary $(m_{DM}, \delta m)$ with $\Omega_{DM} = 0.2$ assumed.
- Non-perturbative correction to annihilation:
 - Sommerfeld-Ramsauer-Towsend effect.
- Direct detection of inelastic EWDM (with nonzero Y).
- Constraints from indirect detections: anti-protons at AMS2, & gamma lines at Fermi-LAT & HESS
 - Higgsino-like, Wino-like, Hypercharged triplet

Conclusion.

Electro-Weak Dark Matter

• A simplistic dark matter candidate: SU(2)_L multiplet with Q=0 component.

• No Yukawa coupling allowed for the stability: automatic (minimal), or imposed by hand.

• Gauge coupling, mass & mass gaps determines all the properties.

EWDM: basics

- A large gauge annihilation rate: multi-TeV mass for the thermal freeze-out relic density.
- Nucleonic scattering at oneloop: $\sigma_{\rm SI} \sim 10^{-45} \, {\rm cm}^2$.
- Radiative mass splitting between the charged and neutral components

 $\sim 0.1~GeV.$

• Disappearing (multi-) charged tracks at LHC.

$$\left\langle \sigma_A v \right\rangle \approx \frac{4\pi \alpha_2^2}{m_{DM}^2}$$
$$\Omega_{\rm DM} h^2 \sim 0.1 \left(\frac{2 {\rm TeV}}{m_{DM}}\right)^2$$

 $DM^{\pm} \rightarrow DM^0 \pi^{\pm}$ $DM^{++} \rightarrow DM^+ \pi^+$

EWDM: basics

5

Quantum numbers			DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45} {\rm cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2	—	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	—	8.5 ± 0.2	166	$\ll 1$	46

Cirelli, et.al., 0512090

Non-perturbative effect

• In non-relativistic limit, pair annihilations can be strongly modified by two-body bound state effect.

Hisano, et.al., 0412403 Cirelli, et.al., 0706.4071

Non-perturbative effect

• Two-body wave functions are governed by Shroedinger eq. with EW potential:

$$-\frac{1}{m_{DM}}\frac{\partial^2 g_{ij}(r)}{\partial r^2} + V_{ik}(r)g_{kj}(r) = Kg_{ij}(r) \qquad K = m_{DM}\beta^2$$

$$g_{ij}(0) = \delta_{ij}$$
 $\partial g_{ij}(\infty) / \partial r = i \sqrt{m_{DM}(K - V_{ii}(\infty))} g_{ij}(\infty)$

$$V_{ij}(r) = 2\,\delta m_{i0}\,\delta_{ij} - \alpha_2 N_i N_j \sum_A \left[T_{ij}^A\right]^2 \frac{e^{-m_A r}}{r}$$

 N_i is 1 or $\sqrt{2}$ for the Dirac (charged) or Majorana (neutral)

CosKASI Dark Matter Workshop 2015, June 9-11

Non-perturbative effect

9

• Annihilation with non-perturbative corrections:

$$\frac{\sigma v(\chi_0^0 \chi_0^0 \to AB) = 2d_{0i}d_{0j}^* \Gamma_{ij}^{AB}}{2} \quad \frac{d_{0j} = g_{0j}(\infty) \quad v = 2\beta}{AB = (W^+ W^-, ZZ, \gamma Z, \gamma \gamma)}$$

$$\Gamma_{ij}^{AB} = \frac{\pi \alpha_2^2}{2(1+\delta_{AB})m_{DM}^2} f(x_A, x_B) N_i N_j \left\{ T^A, T^B \right\}_{ii} \left\{ T^A, T^B \right\}_{jj}$$

$$f(x_A, x_B) \equiv \frac{\left(1 - \frac{x_A + x_B}{2}\right)}{\left(1 - \frac{x_A + x_B}{4}\right)^2} \sqrt{1 - \frac{x_A + x_B}{2} + \frac{(x_A - x_B)^2}{16}} \quad x_A = \frac{m_A^2}{m_{DM}^2}$$

CosKASI Dark Matter Workshop 2015, June 9-11

Sommerfeld-Ramsauer-Townsend

12

- Three important factors: mass, mass gaps, velocity.
- Consider the simplest case of wino-like DM having two bound states, one mass gap.

$$(\chi^+\chi^- \text{ and } \chi^0\chi^0) \quad \delta m_+ \equiv m_{\chi^+} - m_{\chi^0}$$

- Sommerfeld effect: 1931
- RT effect: 1921 electron diffraction in a noble gas.

Dependence on the mass gap

13

• Smaller mass gap → easier transition of the DM state to the charged state which has a long-range Coulomb force (EM).

Direct detection

19

- Inelastic EWDM with nonzero Y.
- Minimum velocity to allow the transition.

$$\beta_{min} = \sqrt{\frac{1}{2M_N E_R}} \left(\frac{M_N E_R}{\mu} + \delta m_N\right)$$

$$c\beta_{min} > v_{max} = v_{esc} + v_{earth}$$

• Cross-section with no mass gap: $c\frac{G_{\rm F}^2 M_N^2}{2\pi} Y^2 (N - (1 - 4s_{\rm W}^2)Z)^2$

$$\delta m_N \equiv m_{\chi_1^0} - m_{\chi_0^0}$$

Observable I-EWDM

Conclusion

- EWDM: a minimal candidate.
- A general study on the non-perturbative effect on non-relativisitic annihilation depending on the DM mass, mass gaps, velocity.
- Appearance of constructive and destructive resonances → Sommerfeld peaks and Ramauser-Townsend dips.
- Strong indirect detection limit from anti-proton, gamma ray and line searches: escape by RT dips?
- Direct detection of inelastic EWDM in the future?