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1. SM1. SM



1. SM (1/3)

The Standard Model of particle physicsThe Standard Model of particle physics

Based on quantum field theory (special relativity + quantum mech.)

• Gauge sector: SU(3)c SU(2)L U(1)Y → gauge bosons
• Matter sector

k  d l t  - quarks and leptons 
- 3 family: only mass difference

• Scalar sector: Higgs field • Scalar sector: Higgs field 
- determines the vacuum structure of the SM

(kinetic terms) (gauge int's) (Yukawa int's)L   



1. SM (2/3)

Some features of the SMSome features of the SM

• Accidental global symmetries at the renormalizable level 
- U(1)B and U(1)- U(1)B and U(1)L
- Explains why protons are stable, and why neutrinos are light.

• Flavor violation only through charged-current weak int’s• Flavor violation only through charged-current weak int s
- Explains why FCNC effects are suppressed as experimentally

measured



1. SM (3/3)

SM: very successful at energy scales below TeV  BUTSM: very successful at energy scales below TeV, BUT

• Naturalness problems
- Origin of EWSB: why <H>≠0  and why <H>~100 GeV << M l?- Origin of EWSB: why <H>≠0, and why <H>~100 GeV << MPl?
- Origin of flavor structure
- Strong CP problem

• Dark matter, Dark energy
• Baryon asymmetry in the Universe
• Neutrino masses• Neutrino masses
• Why 3 gauge interactions? Grand unification?
• Cosmic inflation
• Quantum gravity, …

→ Requires new physics beyond the SM!



2. 2. AxionAxion solution to the strong CP problemsolution to the strong CP problem



2. Strong CP problem (1/5)

CP violation in the SMCP violation in the SM

C: charge conjugation (q → -q) 
P: parity conversion (x → -x)P: parity conversion (x → -x)

• CP violation if the Lagrangian involves a complex coupling which
cannot be rotated away by any field redefinitioncannot be rotated away by any field redefinition.

e.g. Yukawa couplings in the SM



2. Strong CP problem (2/5)

CP violation in the SMCP violation in the SM

 CP violation in the EW sector
CKM t i  k i i  t i  i  i ti  ith k i t’- CKM matrix: quark mixing matrix in association with weak int’s
Unitary tr to obtain mass eigenstates from mu,d=yu,d<H>
One CP violating phase: δ = 1 20±0 3One CP violating phase: δCKM= 1.20±0.3

- PMNS matrix: lepton mixing matrix (massive neutrinos)
One CP phase: δcp → the value is not well-known yetOne CP phase: δcp → the value is not well-known yet

 CP violation in strong interactions
- One CP violating phase related with topological structure of

QCD, anomaly, and instantons.



2. Strong CP problem (3/5)

• CP violation in the electroweak and strong interactions• CP violation in the electroweak and strong interactions

 Experimental bound on the neutron EDM QCD
SM 28qL y Hqq GG




   

CP violations


 

1410  
( )

u d
n

m md e cm
m m m

 


8

CKM

QCD

 arg( ) 1

 arg det( )
q

q

y

y



 




 

 

1010 S CP bl 

n n
p

( )u d sm m m



Str n  CP pr blem: Wh  d es QCD (alm st) preserve CP? 

 10 10  Strong CP problem  

• Strong CP problem: Why does QCD (almost) preserve CP? 

Need some physical explanation!



2. Strong CP problem (4/5)

Axion solution to the strong CP problemAxion solution to the strong CP problem

Introduce NG boson associated with spontaneously broken U(1)PQ
symmetry which is anomalous under QCD

Peccei and Quinn 1977

symmetry which is anomalous under QCD

• the axion couples to gluons through
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fa: axion decay constant ~ (PQ symmetry breaking scale)

• QCD instantons explicitly break PQ  generating axion potential • QCD instantons explicitly break PQ, generating axion potential 
after QCD phase transition at ΛQCD ~ 400 MeV.



2. Strong CP problem (5/5)

Axion solution to the strong CP problemAxion solution to the strong CP problem

• Axion potential
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3. 3. AxionAxion dark matterdark matter



3. Axion DM (1/3)

Axion propertiesAxion properties

determined by fa ~ (PQ breaking scale)
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3. Axion DM (2/3)

Axion dark matterAxion dark matter

• The axion necessarily contributes to cold dark matter if it 
solves the strong CP problemsolves the strong CP problem.

- Axions are produced by coherent oscillations of misaligned
axion field when H becomes comparable to the axion mass, andf w H m mp m ,
behave like non-relativistic particles.
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3. Axion DM (3/3)

PQ extension of the SMPQ extension of the SM

PQ extension naturally explains why the strong interaction does 
not break CP  and provides a good dark matter candidatenot break CP, and provides a good dark matter candidate.

• KSVZ models (hadronic axion model): PQ charged heavy quarks
• DFSZ models: PQ charged Higgs bilinear HuHd



4. Cosmological constraints on 4. Cosmological constraints on axionaxion dark matterdark matter



4. Constraints (1/2)

Possible scenarios depending on when PQ phase transition occursPossible scenarios depending on when PQ phase transition occurs

1. PQ symmetry breaking occurs after inflation
N d N 1 ( b  f d t  ) t  id l- Need NDW=1 (number of degenerate vacua) to avoid overclosure

of the Universe
→ severe constraint on axion modelsr n r n n n m

- Many patches with different axion initial value: <θ2
ini>=π2/3

A i  d d i l  b  ll i  t i ll t  - Axions are produced mainly by collapsing string-wall system 
(NDW=1)  + from coherent oscillations.
domain wall (disc like object surrounded by string): unstabledomain-wall (disc-like object surrounded by string): unstable

10
DM  (2 4) 10 GeVa af      

VNumerical simulation
- Hiramatsu, Kawasaki, Saikawa, Sekiguchi, 2012 



4. Constraints (2/3)

2  No PQ restoration during inflation and thereafter2. No PQ restoration during inflation and thereafter
• There is no domain-wall problem.
• Axion acquires quantum fluctuations δθ during inflation. qu qu um f u u u g f .

- They do not affect the total energy density during the 
primordial inflation

Axenides et al 1983, Turner et al 1985, …

primordial inflation.
- They turn into isocurvature density perturbations at the 
QCD phase transition.

• CMB observation 

510 ,   2.725T T K
T
  
T



4. Constraints (3/3)

2  No PQ restoration during inflation and thereafter2. No PQ restoration during inflation and thereafter
• Single-field inflation generates adiabatic perturbations:
no perturbations in relative number densities of different speciesp u um f ff p

( )i x
Or high enough reheating temperature

→ consistent with the observations 
( )x

• Isocurvature constraint on the axion DM
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5. 5. AxionAxion dark matter in the scenario with no PQ restorationdark matter in the scenario with no PQ restoration



5. Axion DM with no PQ restoration (1/4)

Questions Questions 

• What is the mechanism stabilizing the axion decay constant?
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• Can we suppress axion isocurvature perturbations?
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Planck results:
(tensor-to-scalar ratio) < 0.1
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5. Axion DM with no PQ restoration (2/4)

Questions Questions 

• Can we suppress axion isocurvature perturbations?
E l ti  f th  i fl t ti  f  t t  t- Evolution of the axion fluctuation from tI to tQCD:
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5. Axion DM with no PQ restoration (3/4)

Scenario realizing f (t ) >> f (t )Scenario realizing fa(tI) >> fa (t0)

• Supersymmetric axion models generating axion scales through
competition between supersymmetric higher dim superpotentialcompetition between supersymmetric higher dim superpotential
term and SUSY breaking effects
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→ intermediate axion scale at present, while a Hubble-induced
large axion scale during inflation.

• This type of axion models can be successfully embedded into
string theory, where we can explain why global PQ symmetry is
well protected from quantum gravity effects. 

K. Choi, KSJ, M. S. Seo, 2014



5. Axion DM with no PQ restoration (4/4)

Scenarios realizing f (t ) >> f (t )Scenarios realizing fa(tI) >> fa (t0)

• Isocurvature constraint
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compatible with the axion dark matter Ωa=ΩDM, if the axion
fluctuation experiences a mild suppression.



6. Diluting inflationary 6. Diluting inflationary axionaxion fluctuation by stronger QCDfluctuation by stronger QCD



6. Dilution mechanism (1/6)

We propose a simple way suppressing δθ through its cosmological We propose a simple way suppressing δθ through its cosmological 
evolution.

• Axions scales fixed by competition between supersymmetric• Axions scales fixed by competition between supersymmetric
higher dim superpotential and SUSY breaking effects

• mu-transition: Higgs mu-term generation through
2XW H H

J.E. Kim and H. P. Nilles, 1984

Thermal effects make PQ-charged X evolve as
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6. Dilution mechanism (2/6)

• With the mu-transition  the weak scale can experience unusual• With the mu-transition, the weak scale can experience unusual
evolution because the HuHd flat direction (φ) has mass
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6. Dilution mechanism (3/6)

Stronger QCD Stronger QCD 

• Large weak-scale before the mu-transition results in stronger 
QCD because the quarks become heavier:QCD because the quarks become heavier:
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→  The axion obtains a large mass for large ΛQCD!



6. Dilution mechanism (4/6)

Suppression of δθSuppression of δθ

• The axion experiences a damped oscillation for ma(t) > H(t).

Note: The axion mass is highly suppressed by thermal effects 
for T >> ΛQCD

• The axion fluctuation is diluted as
3/ 2
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L h d S 1995Lyth and Stewart, 1995



6. Dilution mechanism (5/6)

Upper bound on the inflationary Hubble scale consistent with Upper bound on the inflationary Hubble scale consistent with 
the axion dark matter Ωa=ΩDM:



6. Dilution mechanism (6/6)

Axion relic abundanceAxion relic abundance

• The minimum of the axion potential induced by the stronger
QCD is generally different from the minimum of the axionQCD is generally different from the minimum of the axion
potential at present.
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Combined with an intermediate axion scale at present, it leads
to Ωa=ΩDM in a natural way.



7. Models implementing the suppression mechanism7. Models implementing the suppression mechanism



7. Models (1/4)

Simple exampleSimple example

• Superpotential

   2 3 31 2

(MSSM Yukawa)
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• PQ charged X and Y are responsible for mu-transition:

   u d u d u
Pl Pl PlM M M

- Y obtains a thermal mass from the λ interaction, and is fixed
at the origin until T drops below about mSUSY.

- X is also trapped at the origin during this period because it 
has vanishing tadpole.

SUSY

thermal inflation: diluting away unwanted relics (moduli, gravitino, ..)
1number of -foldings: ln( / )
4 Ple N M m



7. Models (2/4)

• Before the mu-transition  κ term stabilizes the H Hd and LH• Before the mu-transition, κ3 term stabilizes the HuHd and LHu
flat directions.

• After the mu-transition, the mu-term makes the flat directions 
non-tachyonic, and consequently Hu and Hd are stabilized near the 
weak scale while L is fixed at the origin  weak scale while L is fixed at the origin. 

X and Y are fixed by κ2 term.

• Axion misalignment angle is generally of O(1) because

- the minimum of the axion potential induced by stronger QCD
is determined by the phase of κ3A3.

- the minimum at present is determined by the phase of Bμ.

→ Axion can naturally account for the observed DM abundance.



7. Models (3/4)

The model can successfully realize the desired cosmological The model can successfully realize the desired cosmological 
evolution of 3 relevant scales for mSUSY between 1-10 TeV: the 
axion scale, the weak scale, and the QCD scale.

• Axion scale
( )( ) ( ) ( )IH tf f f

• Weak scale
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• Weak scale
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• Stronger QCD before the mu-transition

( ) (20 30) T V ( ) 400 M Vt t QCD QCD 0( ) (20-30) TeV,   ( ) 400 MeVt t   



7. Models (4/4)

Interesting issues (work in progress)Interesting issues (work in progress)

• To complete our scheme, we need a late-time baryogenesis.

- The simple model offers an elegant mechanism to generate 
baryon asymmetry through the rolling flat direction LHu: 

Affl k Di  l t iAffleck-Dine leptogenesis



8. Summary8. Summary



8. Summary 

 The QCD axion naturally solves the strong CP problem  and  The QCD axion naturally solves the strong CP problem, and 
contributes to dark matter of the Universe.
→ Well-motivated dark matter candidate!W m m

 We have examined how to suppress axion isocurvature
perturbations while producing the right amount of axion DM in p u w p u g g m u f DM
a natural manner.

- Axion scales are induced by SUSY breaking.n r n u y Y r ng.
- Intermediate phase transition to generate Higgs mu-term 
leads to a stronger QCD, providing further suppression of 
axion isocurvature perturbations. 

Thank you!



BackupBackup



Inflation

Inflation  Inflation  
• can explain the initial conditions required for the Universe to 
evolve to its current state in the Big Bang theory.  u g g y.
• generates density perturbations that give rise to the cosmic 
structures. 

Slow-roll inflation
Important observables are the spectral index and 
tensor-to-scalar ratio:
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No PQ restoration during inflation and thereafterNo PQ restoration during inflation and thereafter
- Single-field inflation generates adiabatic perturbations:

no perturbations in the relative number densities of different p u um f ff
species

( )x

Or high enough reheating temperature

( )x

( )i x

→ consistent with the observations 
510 , 2.725T T K  

- Axion fluctuations are produced during inflation, but do not 
affect the total energy density

10 ,   2.725T K
T

affect the total energy density.



No PQ restoration during inflation and thereafterNo PQ restoration during inflation and thereafter
- Axion fluctuations turn into isocurvature density perturbations 

at QCD phase transition, and there appears non-Gaussianity.Q D p , pp u y.
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The axion is a DM candidate with isocurvature perturbations, 

Axenides, Brandenberger, Turner, 1983;
Seckel, Turner 1985; Linde 1985; Fox, Pierce, Thomas 2004, …
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and so is constrained from the observed CMB spectrum.


