Search for evidences beyond the concordance model of cosmology

Arman Shafieloo

Korea Astronomy and Space Science Institute (KASI)
& University of Science and Technology (UST)

Future Sky Surveys and Big Data Workshop

Daejeon, Korea

25-29 April 2016

Standard Model of Cosmology

Using measurements and statistical techniques to place sharp constraints on parameters of the standard cosmological model.

Baryon density

 Ω_b

Dark Matter is **Cold** and **weakly Interacting**: Ω_{dm}

Neutrino mass and radiation density: *fixed* by assumptions and CMB temperature

Dark Energy is **Cosmological Constant**:

$$\Omega_{\Lambda} = 1 - \Omega_b - \Omega_{dm}$$

Universe is Flat

Initial Conditions:
Form of the Primordial
Spectrum is *Power-law*

$$n_{_{S}},A_{_{S}}$$

Epoch of reionization

Hubble Parameter and the Rate of Expansion

Standard Model of Cosmology

combination of reasonable assumptions, but....

Baryon density

 Ω_b

Dark Matter is **Cold** and **weakly** Interacting: Ω_{dm}

Neutrino mass and radiation density: assumptions and CMB temperature

Dark Energy is **Cosmological Constant**:

$$\Omega_{\Lambda} = 1 - \Omega_b - \Omega_{dm}$$

Universe is Flat

Initial Conditions:
Form of the Primordial
Spectrum is *Power-law*

$$n_{_{S}},A_{_{S}}$$

Epoch of reionization

Hubble Parameter and the Rate of Expansion

Beyond the Standard Model of Cosmology

- The universe might be more complicated than its current standard model (Vanilla Model).
- There might be some extensions to the standard model in defining the cosmological quantities.
- This needs proper investigation, using advanced statistical methods, high performance computational facilities and high quality observational data.

(Present)

Standard Model of Cosmology

Universe is Flat

Universe is Isotropic

Universe is Homogeneous (large scales)

Dark Energy is Lambda (w=-1)

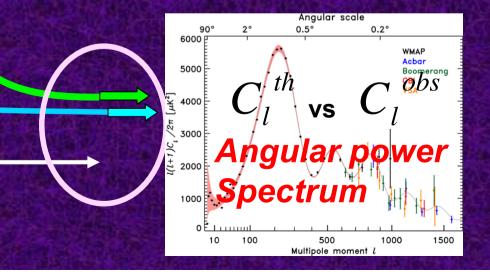
Power-Law primordial spectrum (n_s=const)

Dark Matter is cold

All within framework of FLRW

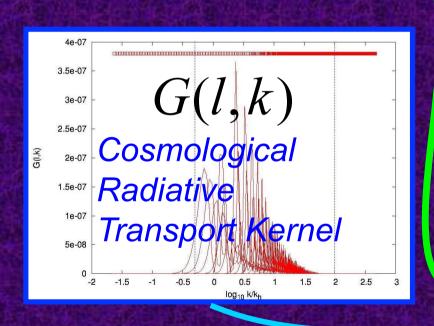
Constraints on inflationary scenarios from cosmological observations:

- Form of the primordial spectrum (degenerate with other cosmological quantities).
- Tensor-to-scalar ratio of perturbation amplitudes (near future potential probe)
- Primordial non-Gaussianities (near future potential probe)

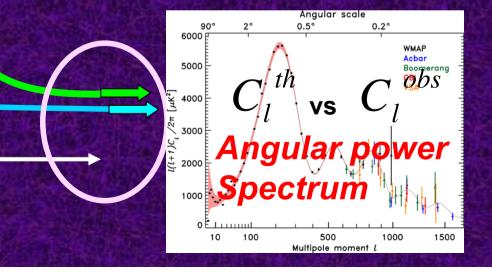

P(k)Primordial Power
Spectrum

Parameterization and Model Fitting

Suggested by Model of Inflation


$$C_l = \sum G(l,k)P(k)$$

Determined by background model and cosmological parameters


Detected by observation

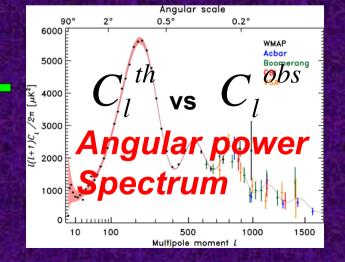
We cannot anticipate the unexpected!!

 $C_l = \sum G(l,k)P(k)$

Determined by background model and cosmological parameters

Detected by observation

P(k)Primordial Power Spectrum

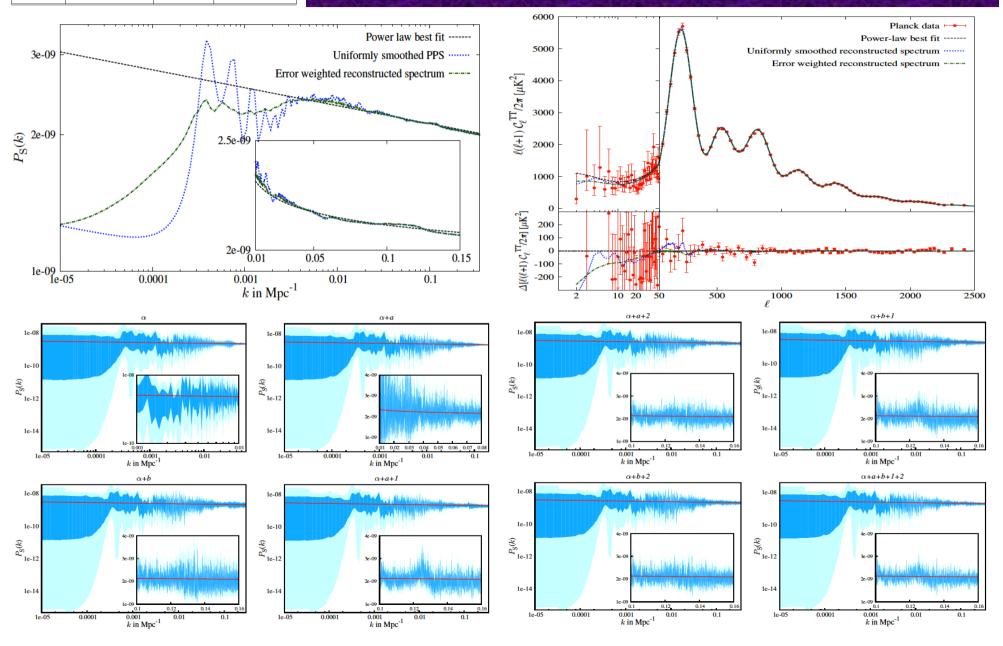

DIRECT TOP DOWN Reconstruction

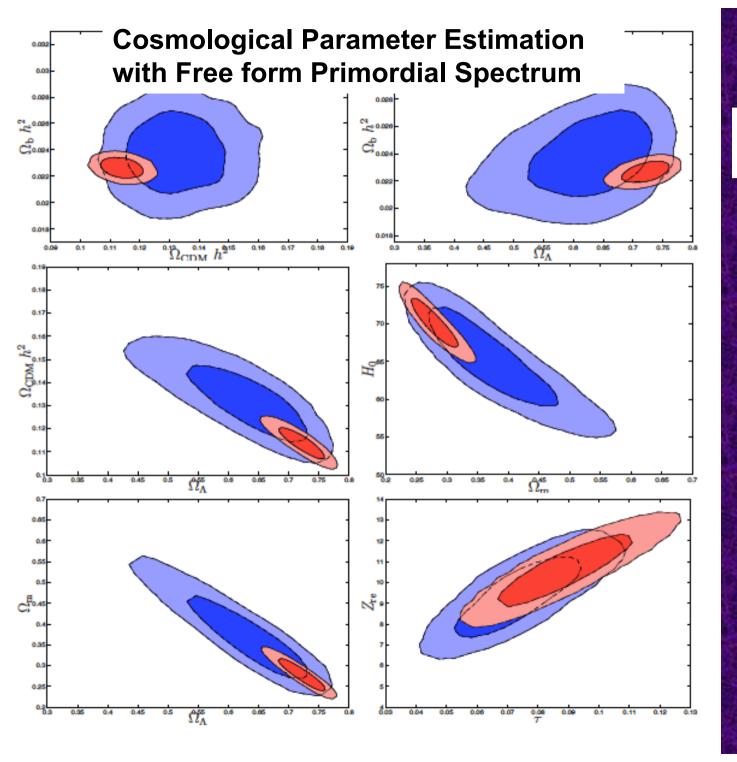
Reconstructed by Observations

$$\frac{4e-07}{3.5e-07}$$
 $\frac{G(l,k)}{Cosmological}$
 $\frac{2e-07}{1.5e-07}$
 $\frac{Radiative}{Transport}$
 $\frac{1e-07}{5e-08}$
 $\frac{Transport}{\log_{10}k/k_h}$

$$C_l = \sum G(l,k)P(k)$$

Determined by background model and cosmological parameters

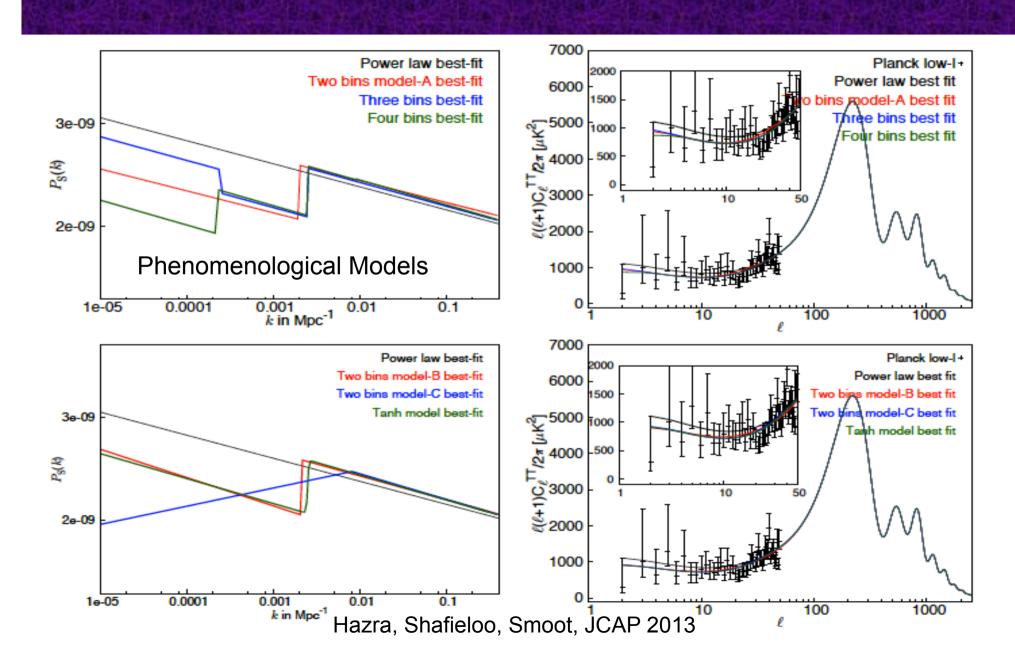


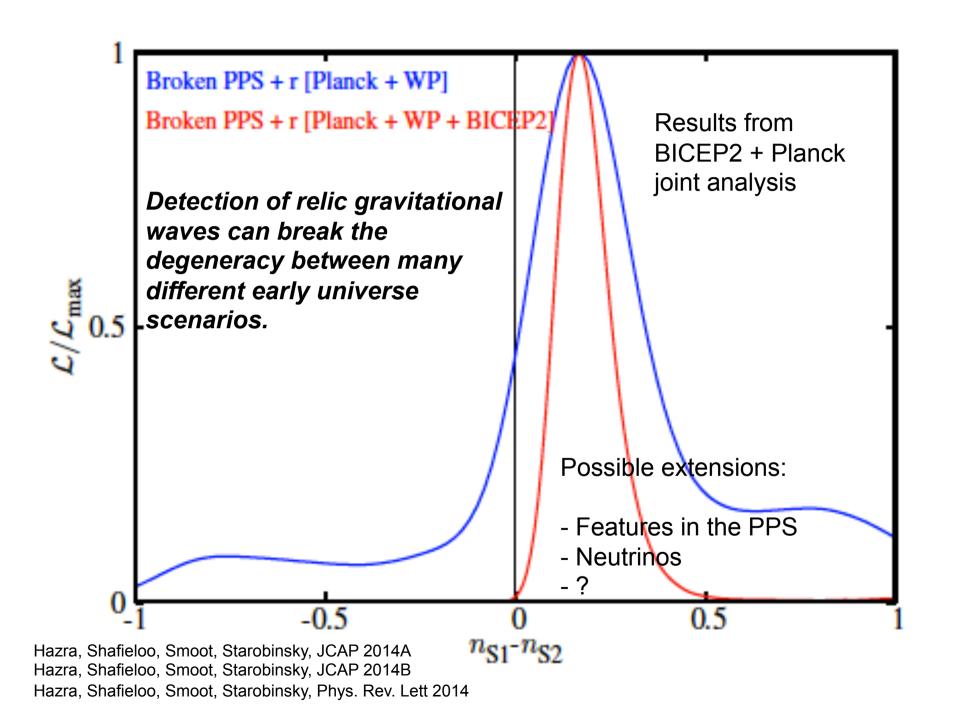

Detected by observation

Our symbol	Spectra	$\text{Multipoles}(\ell)$	Scales
α	low-ℓ	2-49	Largest scales
a	$100~\mathrm{GHz} \times 100~\mathrm{GHz}$	50-1200	Intermediate scales
ь	$143~\mathrm{GHz} \times 143~\mathrm{GHz}$	50-2000	Intermediate scales
1	$217~\mathrm{GHz} \times 217~\mathrm{GHz}$	500-2500	Small scales
2	$143~\mathrm{GHz} \times 217~\mathrm{GHz}$	500-2500	Small scales

Primordial Power Spectrum from Planck

Hazra, Shafieloo & Souradeep, JCAP 2014

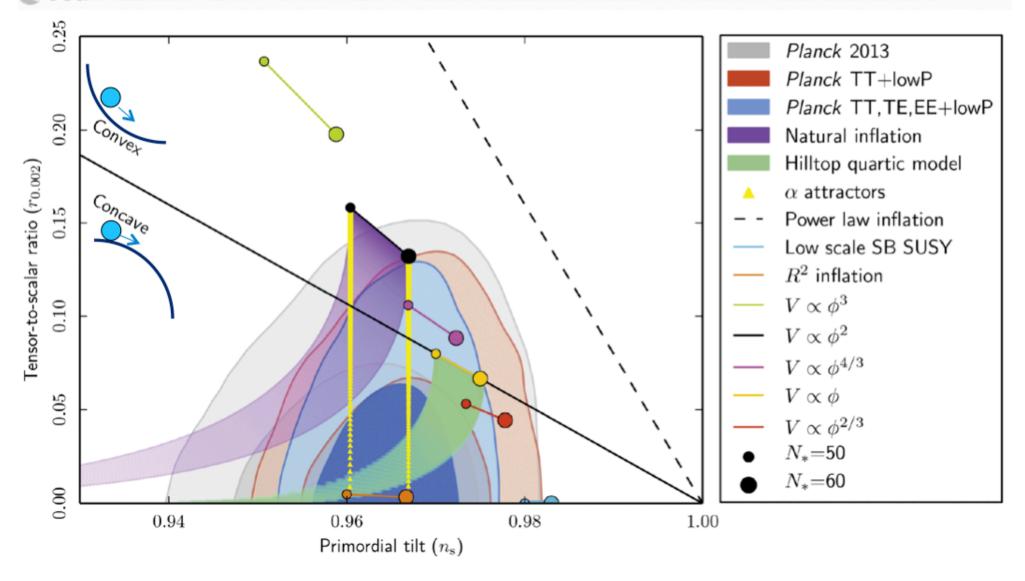



Red Contours: Power Law PPS

Blue Contours: Free Form PPS

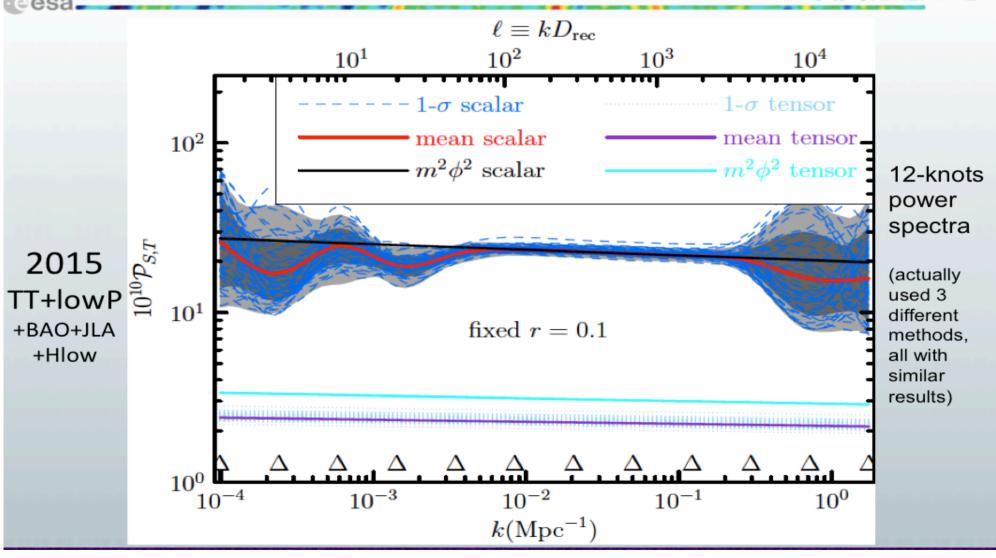
Hazra, Shafieloo & Souradeep, PRD 2013

Beyond Power-Law: there are some other models consistent to the data.



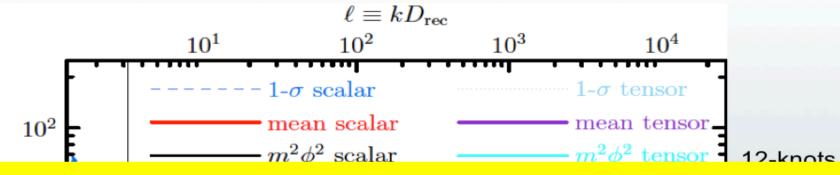
Planck 2015: No detectable primordial G-waves

Planck 2015: n_s vs r

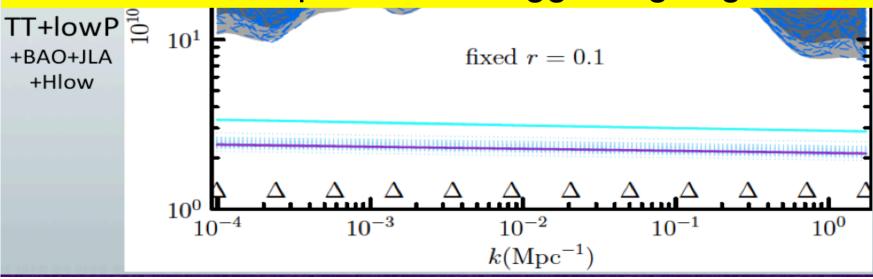


Planck 2015: No feature

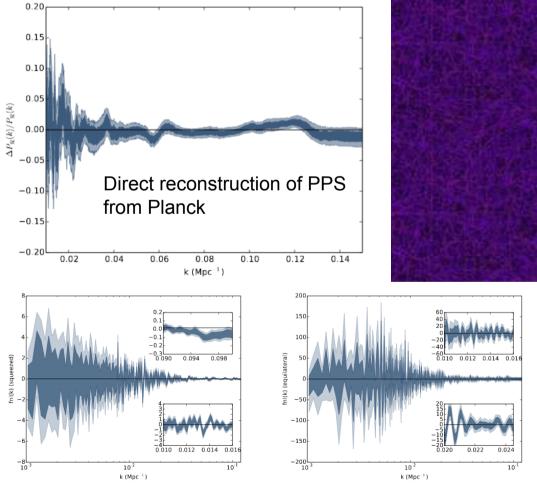
Power spectra reconstruction

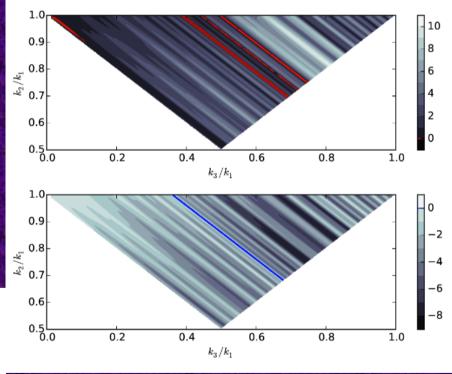


Planck 2015: No feature



Power spectra reconstruction

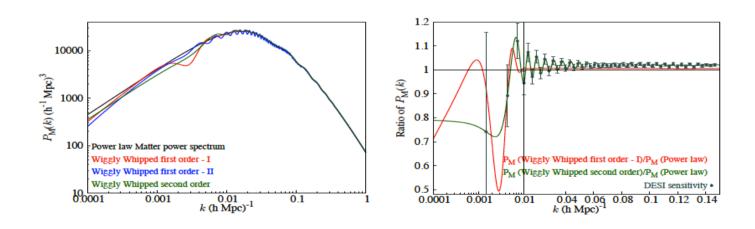

Planck likelihood codes are released but not the data in a usable form in practice. Struggle is going on.....



used 3 different methods, all with similar results)

Plausible approach for the future:

Joint constraint on inflationary features using the two and threepoint correlations of temperature and polarization anisotropies



Bispectrum in terms of the reconstructed power spectrum and its first two derivatives

Appleby, Gong, Hazra, Shafieloo, Sypsas, arXiv:1512.08977

From 2D to 3D

Using LSS data to test early universe scenarios

Figure 5. Wiggly Whipped Inflation: Matter power spectra (left) obtained from the best fit potential and background parameters (in Table 1) and the ratio (right) w.r.t. the matter power spectra obtained from power law best fit model. The DESI forecasted fractional errors are overlayed in the right panel as well. Note that from the future matter power spectrum data we shall be able to identify specific features in the primordial power spectrum.

From 2D to 3D

Using LSS data to test early universe scenarios

- •Targets: Features in PPS, primordial non-Gaussianity, spherical asymmetry
- •Tools: Simulations, higher order statistics, cross correlation with other data.
- Aim: To be well prepared for the future data (DESI).

(Present)

Standard Model of Cosmology

Universe is Flat

Universe is Isotropic

Universe is Homogeneous (large scales)

Dark Energy is Lambda (w=-1)

Power-Law primordial spectrum (n_s=const)

Dark Matter is cold

All within framework of FLRW

Dark Energy Models

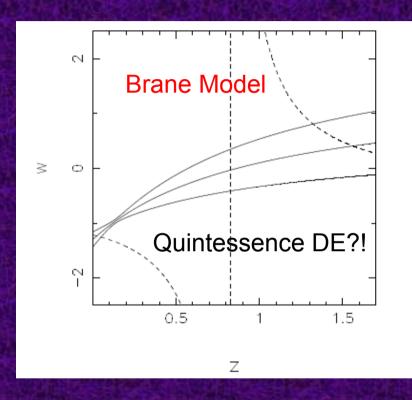
- Cosmological Constant
- Quintessence and k-essence (scalar fields)
- Exotic matter (Chaplygin gas, phantom, etc.)
- Braneworlds (higher-dimensional theories)
- Modified Gravity

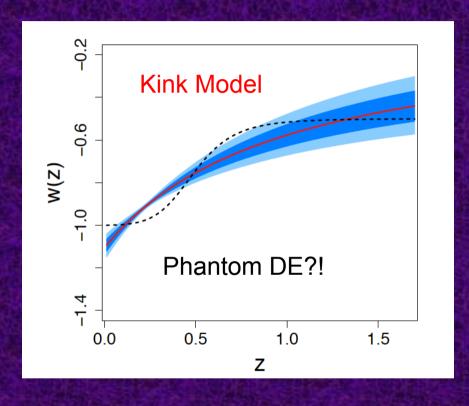
•

But which one is really responsible for the acceleration of the expanding universe?!

Reconstructing Dark Energy

To find cosmological quantities and parameters there are two general approaches:


1. Parametric methods


Easy to confront with cosmological observations to put constrains on the parameters, but the results are highly biased by the assumed models and parametric forms.

2. Non Parametric methods

Difficult to apply *properly* on the raw data, but the results will be less biased and more reliable and independent of theoretical models or parametric forms.

Problems of Dark Energy Parameterizations (model fitting)

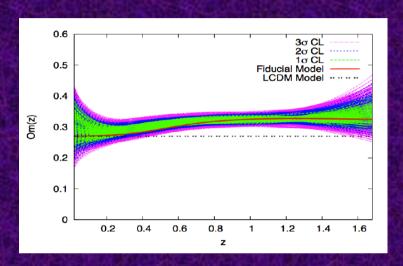
Shafieloo, Alam, Sahni & Starobinsky, MNRAS 2006

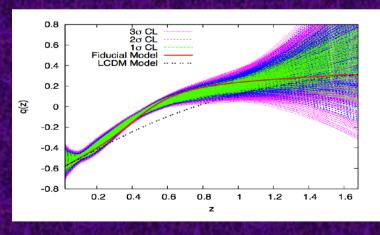
$$w(z) = w_0 + w_a \frac{z}{1+z}$$

Chevallier-Polarski-Linder ansatz (CPL).

Problems of Dark Energy Parameterizations

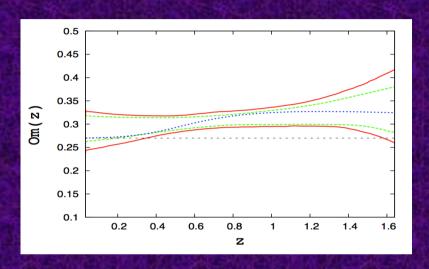
WARNING:

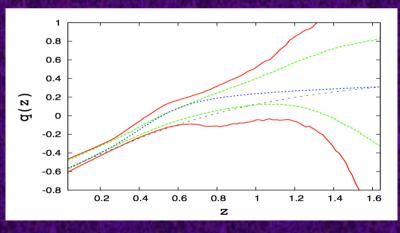

If your choice of parameterization (such as w0-wa) is wrong, which could be, with higher quality of the data and better control of the systematics you might get simply more misguided towards the nature of dark energy (even though you will get beautiful tiny CL contours)!


$$w(z) = w_0 + w_a \frac{z}{1+z}$$

Chevallier-Polarski-Linder ansatz (CPL).

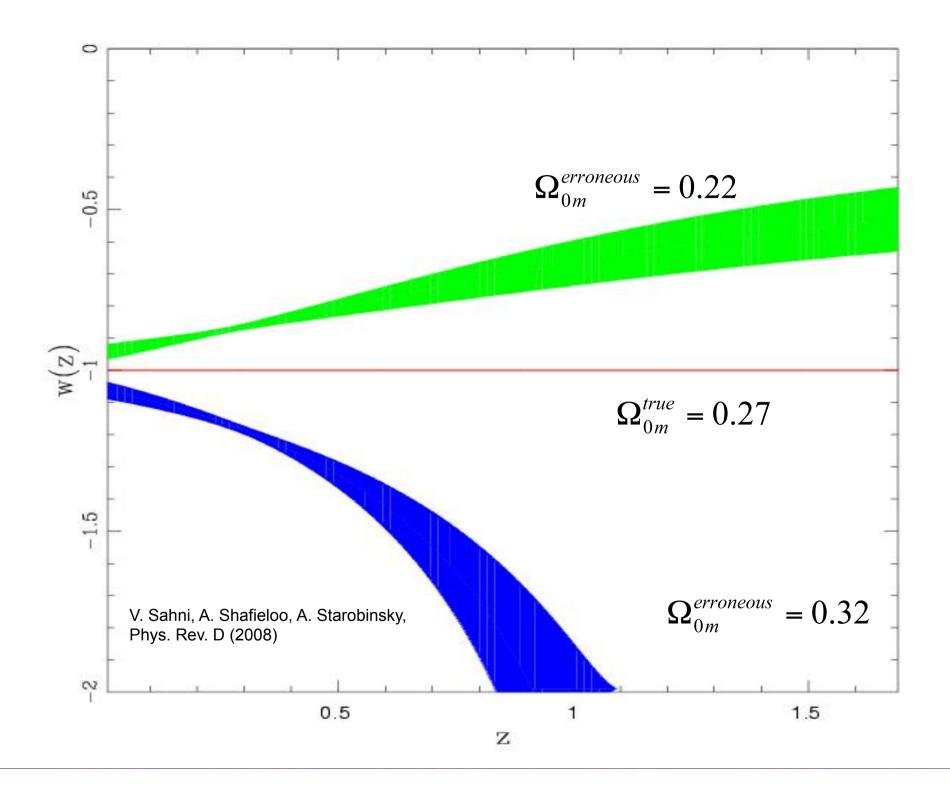
Model independent reconstruction of the expansion history


Crossing Statistic + Smoothing



Shafieloo, JCAP (b) 2012

Gaussian Processes


Shafieloo, Kim & Linder, PRD 2012

Dealing with observational uncertainties in matter density (and curvature)

- Small uncertainties in the value of matter density affects the reconstruction exercise quiet dramatically.
- Uncertainties in matter density is in particular bound to affect the reconstructed w(z).

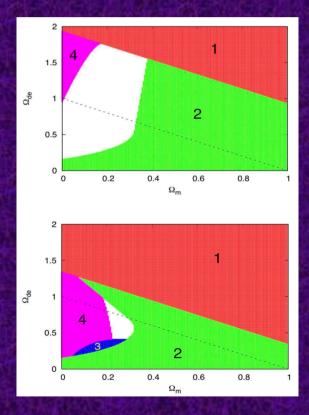
$$H(z) = \left[\frac{d}{dz} \left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

$$\omega_{DE} = \frac{(\frac{2(1+z)}{3}\frac{H'}{H}) - 1}{1 - (\frac{H_0}{H})^2 \Omega_{0M} (1+z)^3}$$

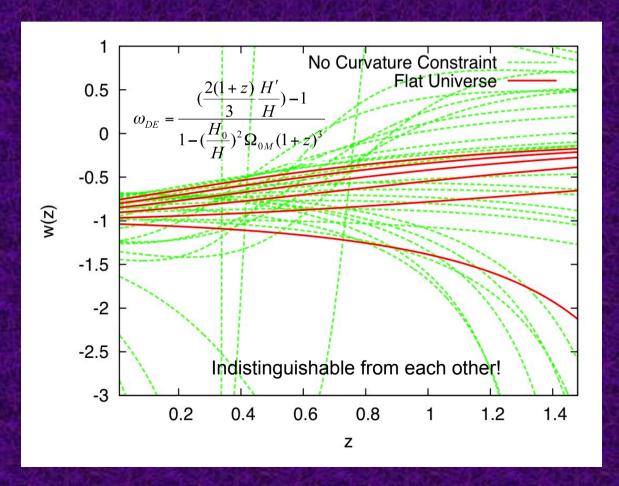
Full theoretical picture:

Cosmographic Degeneracy

$$d_l(z) = \frac{1+z}{\sqrt{1-\Omega_m}-\Omega_{de}} \sinh\left(\sqrt{1-\Omega_m}-\Omega_{de}\right) \sqrt{\frac{z}{h(z')}} \frac{dz'}{h(z')}$$


$$= (\hat{a}/a)^2 = [H(z)/H_0]^2 \equiv (\hat{a}/a)^2$$

$$= (\hat{\Omega}_m) 1 + z)^3 + (1 - (\hat{\Omega}_m) - (\hat{\Omega}_{de}) (1 + z)^2$$


$$+ (\hat{\Omega}_{de}) \exp \left[3 \int_0^z \frac{dz'}{1 + z'} \left[1 + w(z') \right] \right],$$

Cosmographic Degeneracy

• Cosmographic Degeneracies would make it so hard to pin down the actual model of dark energy even in the near future.

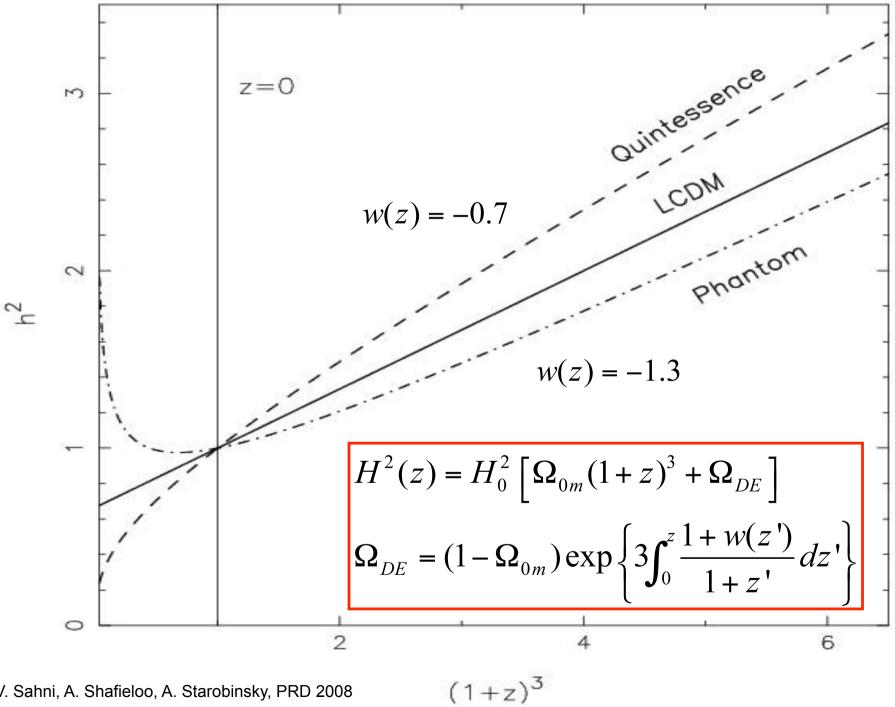
Shafieloo & Linder, PRD 2011

Reconstruction & Falsification

Considering (low) quality of the data and cosmographic degeneracies we should consider a new strategy sidewise to reconstruction: Falsification.

Yes-No to a hypothesis is easier than characterizing a phenomena.

We should look for special characteristics of the standard model


But, How? and relate them to observables.

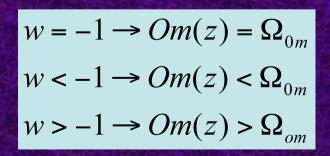
Falsification of Cosmological Constant

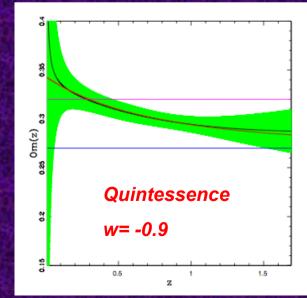
 Instead of looking for w(z) and exact properties of dark energy at the current status of data, we can concentrate on a more reasonable problem:

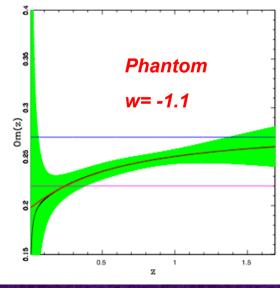
Yes-No to a hypothesis is easier than characterizing a phenomena

Falsification: Null Test of Lambda

Om diagnostic


$$Om(z) = \frac{h^{2}(z) - 1}{(1+z)^{3} - 1}$$


We Only Need h(z)


 $h(z) = H(z)/H_0$

Om(z) is constant only for FLAT LCDM model

V. Sahni, A. Shafieloo, A. Starobinsky, PRD 2008

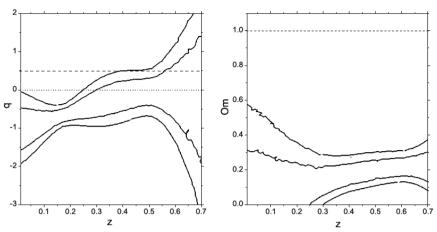


Figure 12. Confidence levels (1 \sigma and 2 \sigma) for the deceleration parameter as a function of redshift and Om(z) reconstructed from the compilation of geometric measurements in tables 2 and 3 Ho is marginalised over with an HST prior. The dotted line in the left panel demarcates accelerating expansion (below the line) from decelerated expansion (above the line). The dashed line in both panels shows the expectation for an EdS model

SDSS III / BOSS collaboration L. Samushia et al, MNRAS 2013

WiggleZ collaboration C. Blake et al, MNRAS 2011 (Alcock-Paczynski measurement)

Om diagnostic is very well established

Blake et al.

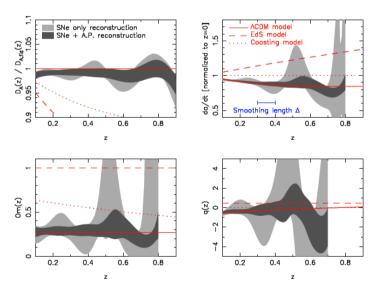


Figure 6. This Figure shows our non-parametric reconstruction of the cosmic expansion history using Alcock-Paczynski and supernovae data. The four panels of this figure display our reconstructions of the distance-redshift relation $D_A(z)$, the expansion rate a/H_0 , the Om(z) statistic and the deceleration parameter q(z) using our adaptation of the iterative method of Shafieloo et al. (2006) and Shafieloo & Clarkson (2010). The distance-redshift relation in the upper left-hand panel is divided by a fiducial model for clarity, where the model corresponds to a flat Λ CDM cosmology with $\Omega_{\rm m}=0.27$. This fiducial model is shown as the solid line in all panels; Einstein de-Sitter and coasting models are also shown defined as in Figure 5. The shaded regions illustrate the 68% confidence range of the reconstructions of each quantity obtained using bootstrap resamples of the data. The dark-grey regions utilize a combination of the Alcock-Paczynski and supernovae data and the light-grey regions are based on the supernovae data alone. The redshift smoothing scale $\Delta=0.1$ is also illustrated. The reconstructions in each case are terminated when the SNe-only results become very noisy; this maximum redshift reduces with each subsequent derivative of the distance-redshift relation [i.e. is lowest for q(z)].

Om₃

A null diagnostic customized for reconstructing the properties of dark energy directly from BAO data

$$Om3(z_{1},z_{2},z_{3}) = \frac{Om(z_{2},z_{1})}{Om(z_{3},z_{1})} = \frac{\frac{h^{2}(z_{2}) - h^{2}(z_{1})}{(1+z_{2})^{3} - (1+z_{1})^{3}}}{\frac{h^{2}(z_{3}) - (1+z_{1})^{3}}{(1+z_{3})^{3} - (1+z_{1})^{3}}} = \frac{\frac{\frac{h^{2}(z_{2})}{H^{2}(z_{1})} - 1}{\frac{(1+z_{2})^{3} - (1+z_{1})^{3}}{H^{2}(z_{1})}}}{\frac{h^{2}(z_{3})}{(1+z_{3})^{3} - (1+z_{1})^{3}}} = \frac{\frac{\frac{h^{2}(z_{2})}{H^{2}(z_{2})}}{\frac{(1+z_{2})^{3} - (1+z_{1})^{3}}{(1+z_{3})^{3} - (1+z_{1})^{3}}}}{\frac{\frac{h^{2}(z_{3})}{H^{2}(z_{2})}}{\frac{H^{2}(z_{2})}{(1+z_{3})^{3} - (1+z_{1})^{3}}}} = \frac{\frac{\frac{H^{2}(z_{2})}{H^{2}(z_{2})} - 1}{\frac{H^{2}(z_{2})}{H^{2}(z_{2})}}}{\frac{H^{2}(z_{2})}{(1+z_{3})^{3} - (1+z_{1})^{3}}}$$

$$\frac{d(z) = \frac{r_{s}(z_{\text{CMB}})}{D_{V}(z)}$$
Observables

Shafieloo, Sahni, Starobinsky, PRD 2013

$$H(z_i;z_j) := \frac{H(z_i)}{H(z_j)} = \frac{z_i}{z_j} \left[\frac{D(z_i)}{D(z_j)} \right]^2 \left[\frac{D_V(z_j)}{D_V(z_i)} \right]^3 = \frac{z_i}{z_j} \left[\frac{D(z_i)}{D(z_j)} \right]^2 \left[\frac{d(z_i)}{d(z_j)} \right]^3 ,$$

Characteristics of Om3

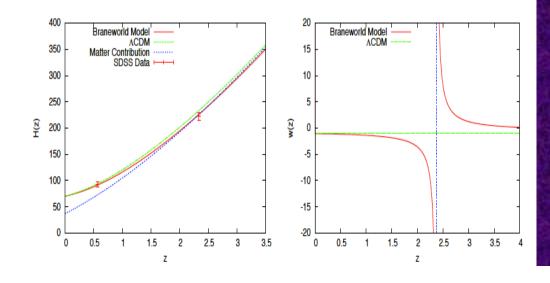
Om is constant only for Flat LCDM model Om3 is equal to one for Flat LCDM model

$$Om3(z_1; z_2; z_3) = \frac{H(z_2; z_1)^2 - 1}{x_2^3 - x_1^3} / \frac{H(z_3; z_1)^2 - 1}{x_3^3 - x_1^3}, \text{ where } x = 1 + z,$$

$$H(z_i; z_j) = \left(\frac{z_j}{z_i}\right)^2 \left[\frac{D(z_i)}{D(z_j)}\right]^2 \left[\frac{A(z_j)}{A(z_i)}\right]^3 = \frac{z_i}{z_j} \left[\frac{D(z_i)}{D(z_j)}\right]^2 \left[\frac{d(z_i)}{d(z_j)}\right]^3 ,$$

Om3 is independent of H0 and the distance to the last scattering surface and can be derived directly using BAO observables.

Omh2


A very recent result.

Model Independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillation

$$Omh2(z_1, z_2) = \frac{H^2(z_2) - H^2(z_1)}{(1 + z_2)^3 - (1 + z_1)^3} = \Omega_{0m}H_0^2$$

Sahni, Shafieloo, Starobinsky, ApJ Lett 2014

Only for LCDM

$$Omh^2 = 0.1426 \pm 0.0025$$

LCDM +Planck+WP

$$Omh^2(z_1; z_2) = 0.124 \pm 0.045$$

$$Omh^2(z_1; z_3) = 0.122 \pm 0.010$$

$$Omh^2(z_2; z_3) = 0.122 \pm 0.012$$

BAO+H0

$$H(z = 0.00) = 70.6 \text{ } \text{pm } 3.3 \text{ } \text{km/sec/Mpc}$$

 $H(z = 0.57) = 92.4 \text{ } \text{pm } 4.5 \text{ } \text{km/sec/Mpc}$

$$H(z = 2.34) = 222.0 \text{ pm } 7.0 \text{ km/sec/Mpc}$$

Future Sky Surveys

- Om diagnostic needs h(z) [information of H0 is required], more suitable to use combination of SNe and BAO data.
- Omh2 can be derived with high precision

$$\sigma_{Omh2(z_1,z_2)} \approx 5.64 \times 10^{-3} [Euclid]$$

 $\sigma_{Omh2(z_1,z_2)} \approx 4.09 \times 10^{-3} [SKA2]$

$$Omh2 \equiv \Omega_{om}H^2$$

 Om3 will show its power as it can be measured very precisely and used as a powerful litmus test of Lambda.

$$\sigma_{Om3} \approx 1.0 \times 10^{0} [Wiggle Z]$$

$$\sigma_{Om3} \approx 2.0 \times 10^{-1} [DESI]$$

$$\sigma_{Om3} \approx 1.4 \times 10^{-2} [Euclid, LSST]$$

$$\sigma_{Om3} \approx 9.3 \times 10^{-3} [SKA2(Gal)]$$

Using LSS data to test Lambda dark energy

- Target: Finding deviation from Lambda
- Tools: Litmus tests such as Om, Om3 and Omh2 applicable on the observables, nonparametric reconstruction of the cosmic expansion and growth.
- Aim: Preparing for the upcoming data (eBOSS, DESI, Euclid, LSST, SKA)

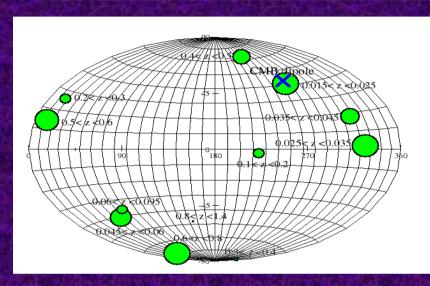
(Present)

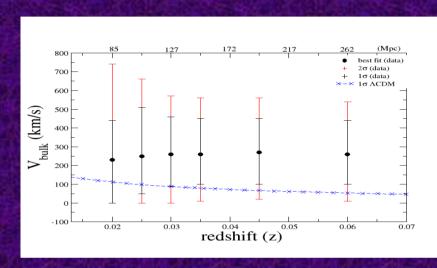
Standard Model of Cosmology

Universe is Flat

Universe is Isotropic

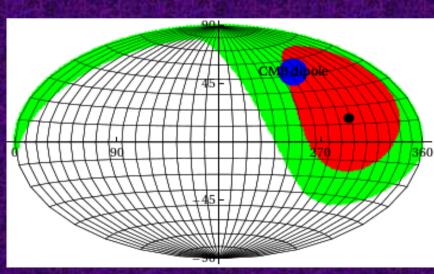
Universe is Homogeneous (large scales)


Dark Energy is Lambda (w=-1)


Power-Law primordial spectrum (n_s=const)

Dark Matter is cold

All within framework of FLRW


Falsification: Is Universe Isotropic?

Method of Smoothed Residuals

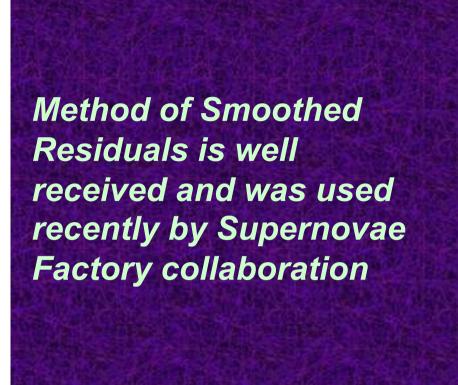
- → Residual Analysis,
- → Tomographic Analysis,
- → 2D Gaussian Smoothing,
- → Frequentist Approach
- →Insensitive to non-uniform distribution of the data

Colin, Mohayaee, Sarkar & Shafieloo MNRAS 2011

Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory

U. Feindt^{1*}, M. Kerschhaggl^{1*}, M. Kowalski¹, G. Aldering², P. Antilogus³, C. Aragon², S. Bailey², C. Baltay⁴, S. Bongard³, C. Buton¹, A. Canto³, F. Cellier-Holzem³, M. Childress⁵, N. Chotard⁶, Y. Copin⁶, H. K. Fakhouri^{2,7}, E. Gangler⁶, J. Guy³, A. Kim², P. Nugent^{8,9}, J. Nordin^{2,10}, K. Paech¹, R. Pain³, E. Pecontal¹¹, R. Pereira⁶, S. Perlmutter^{2,7}, D. Rabinowitz⁴, M. Rigault⁶, K. Runge², C. Saunders², R. Scalzo⁵, G. Smadja⁶, C. Tao^{12,13}, R. C. Thomas⁸, B. A. Weaver¹⁴, C. Wu^{3,15}

- Physikatisches Institut, Universität Bonn, Nußatlee 12, 53115 Bonn, Germany
- ² Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720
- ³ Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05, France
- Department of Physics, Yale University, New Haven, CT, 06250-8121
- 5 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia.
- 6 Université de Lyon, F-69622, Lyon, France ; Université de Lyon 1, Villeurbanne ; CNRS/IN2P3, Institut de Physique Nucléaire de Lyon.
- Department of Physics, University of Catifornia Berkeley, 366 LeConte Hatt MC 7300, Berkeley, CA, 94720-7300
- 8 Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA, 94720
- Department of Astronomy, B-20 Hearst Field Annex # 3411, University of California, Berkeley, CA 94720-3411, USA
- ¹⁰ Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720, USA
- 11 Centre de Recherche Astronomique de Lyon, Université Lyon 1, 9 Avenue Charles André, 69561 Saint Genis Laval Cedex, France
- 12 Centre de Physique des Particules de Marseille, 163, avenue de Luminy Case 902 13288 Marseille Cedex 09, France
- ¹³ Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China
- 14 Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003, USA
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

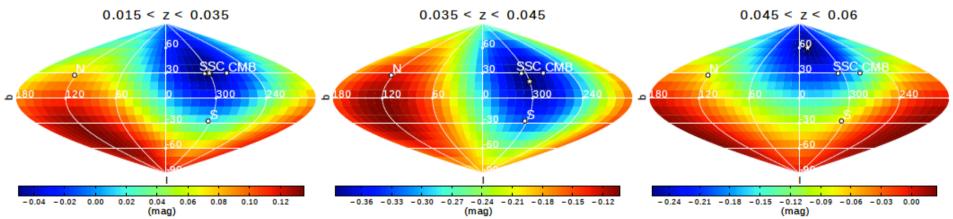

Received 12 May 2013, Accepted 10 Oct, 2013

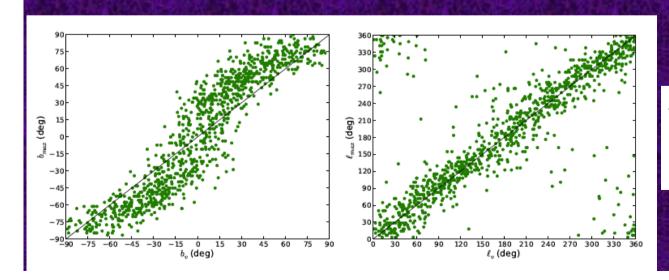
ABSTRACT

Context. Our Local Group of galaxies appears to be moving relative to the cosmic microwave background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the weight of type Ia supernovae (SNe Ia) has increased recently with the continuously improving statistics of available low-redshift supernovae. Aims. We measured the bulk flow in the nearby universe (0.015 < z < 0.1) using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the Union2 compilation of SN Ia data already in the literature.

Methods. The bulk flow velocity was determined from SN data binned in redshift shells by including a coherent motion (dipote) in a cosmological fit. Additionally, a method of spatially smoothing the Hubble residuals was used to verify the results of the dipote fit. To constrain the location and mass of a potential mass concentration (e.g., the Shapley supercluster) responsible for the peculiar motion, we fit a Hubble law modified by adding an additional mass concentration.

Results. The analysis shows a bulk flow that is consistent with the direction of the CMB dipole up to $z \sim 0.06$, thereby doubling the volume over which conventional distance measures are sensitive to a bulk flow. We see no significant turnover behind the center of the Shaplev supercluster is only marginally consistent with our




Fig. 3. Magnitude residuals of SNe Ia from the combined Union2 and SNFACTORY dataset as a function of galactic coordinates (l, b) after smoothing with a Gaussian window function of width $\delta = \frac{\pi}{2}$ in the redshift range 0.015 < z < 0.035 (left), 0.035 < z < 0.045 (middle) and 0.045 < z < 0.06 (right). The bulk flow direction is marked by a star.

Catalog	$0.015 \le z < 0.025$	$0.025 \le z < 0.035$	$0.035 \le z < 0.045$	$0.045 \leq z < 0.06$	$0.06 \le z < 0.1$
Union 2.1	61	51	15	17	19
Constitution	53	40	11	12	8
LOSS	76	64	23	17	19
Combined	98	67	22	27	12

Δz	Catalog	$b_{ m max}$	ℓ_{max}	\boldsymbol{p}	Δz	Catalog	$b_{\rm max}$	ℓ_{max}	\boldsymbol{p}
	Union 2.1 Const (SALT II)		284°	$0.084 \\ 0.624$		Union 2.1 Const (SALT II)	20°	284°	$0.084 \\ 0.624$
$0.015 \le z < 0.025$	Const (MLCS 17) LOSS	4°	247°	0.412	$0.015 < z \le 0.025$	Const (MLCS 17) LOSS	67° 4°	247°	$0.692 \\ 0.412$
	Combined	27°		0.179		Combined			0.179
	Union 2.1 Const (SALT II)	36°	320°	$0.665 \\ 0.271$		Union 2.1 Const (SALT II)	27°	322°	$0.166 \\ 0.201$
$0.025 \le z < 0.035$	Const (MLCS 17) LOSS	38°	320°	0.156	$0.015 < z \le 0.035$	Const (MLCS 17) LOSS	52° 39°	283°	$0.201 \\ 0.177$
	Combined	56°		0.339		Combined			0.119
0.025 / 0.045	Union 2.1 Const (SALT II) Const (MLCS 17)		306°	$0.172 \\ 0.672 \\ 0.102$		Union 2.1 Const (SALT II) Const (MLCS 17)	31° 27° 49°	301°	0.063 0.123 0.083
$0.035 \le z < 0.045$	LOSS Combined		292°	0.192 0.534 0.381	$0.015 < z \le 0.045$	LOSS Combined	20°	284°	0.083 0.149 0.070
	Union 2.1			0.412		Union 2.1			0.198
0.045 / ~ < 0.06	Const (SALT II) Const (MLCS 17)	-54°	55°	0.572		Const (SALT II) Const (MLCS 17)	22°	310°	0.198 0.216 0.372
$0.045 \le z < 0.06$	LOSS Combined	54°	3°	0.457 0.495	$0.013 < z \le 0.00$	LOSS Combined	22° 39°	288°	0.372 0.159 0.176
				0.426					
0.00 < - < 0.1	Union 2.1 Const (SALT II)	54°	32°			Union 2.1 Const (SALT II)	27°	317°	0.295 0.197 0.431
$0.06 \le z < 0.1$	Const (MLCS 17) LOSS Combined	52°	349°	0.352 0.532 0.788	$0.015 < z \le 0.1$	Const (MLCS 17) LOSS Combined	27° 36°	295°	0.431 0.114 0.270
	Combined	-34	65	0.788		Combined	30	200	0.270

Method of Smoothed Residuals

Δz	$p_{ m A}$ $p_{ m B}$	
$0.015 \le z < 0.025$	0.179 0.371	
$0.015 \le z < 0.035$	0.119 0.355	
$0.015 \le z < 0.045$	0.070 0.290	
$0.015 \le z < 0.060$	0.176 0.412	
$0.015 \le z < 0.100$	0.270 0.531	

Bias in the Sky

	North (b		South (b _v	
$V_{\rm bulk} ({\rm km s^{-1}})$	$(\Delta b, \Delta \ell)$			
400	(13°, -3°)	(14°, 28°)	$(-12^\circ,2^\circ)$	(14°, 29°)
800	$(15^\circ, -4^\circ)$	$(9^\circ,22^\circ)$	$(-13^\circ,2^\circ)$	$(9^{\circ},21^{\circ})$

Appleby, Shafieloo, JCAP 2014 Appleby, Shafieloo, Johnson, ApJ 2015

Catalog	$0.015 \le z < 0.025$	$0.025 \le z < 0.035$	$0.035 \le z < 0.045$	$0.045 \leq z < 0.06$	$0.06 \le z < 0.1$
Union 2.1	61	51	15	17	19
Constitution	53	40	11	12	8
LOSS	76	64	23	17	19
Combined	98	67	22	27	12

Δz	Catalog	$b_{ m max}$	P	n	Δz	Catalog	h	ℓ_{max}	p
	Union 2.1	49°		$\frac{P}{0.084}$		Union 2.1			$\frac{P}{0.084}$
	Const (SALT II)	20°	284°	0.624		Const (SALT II)	20°	284°	0.624
$0.015 \le z < 0.025$	Const (MLCS 17)	67°	241°	0.692	$0.015 < z \le 0.025$	Const (MLCS 17)	67°	241°	0.692
	LOSS	4°	247°	0.412		LOSS	4°	247°	0.412
	Combined	27°	241°	0.179		Combined	27°	241°	0.179
	Union 2.1			0.665	1	Union 2.1			0.166
	Const (SALT II)	36°		0.271		Const (SALT II)		322°	0.201
$0.025 \le z < 0.035$	Const (MLCS 17)	40°	313°	0.202	$0.015 < z \le 0.035$	Const (MLCS 17)	52°	288°	0.201
	LOSS	38°	320°	0.156		LOSS	39°	283°	0.177
	Combined	56°	328°	0.339		Combined	41°	266°	0.119
	Union 2.1	27°	320°	0.172		Union 2.1	31°	284°	0.063
	Const (SALT II)	25°	306°	0.672		Const (SALT II)	27°	301°	0.123
	Const (MLCS 17)	36°				Const (MLCS 17)	49°	299°	0.083
	T Occ	070	0000	0 534	I	TOGG `	200	0040	0 1 40

Method of Smoothed Residuals

Δz	p_{A}	$p_{ m B}$
$0.015 \le z < 0.025$	0.179	0.371

.119 0.355

.070 0.290

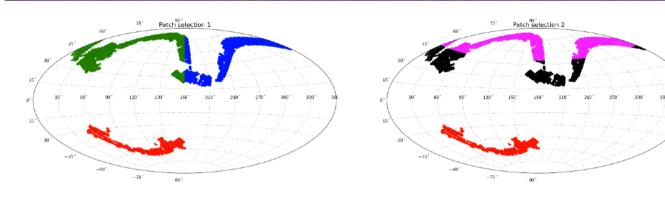
.176 0.412

contributions with SNIa distances to

 $.270\ 0.531$

test isotropy-homogeneity of the

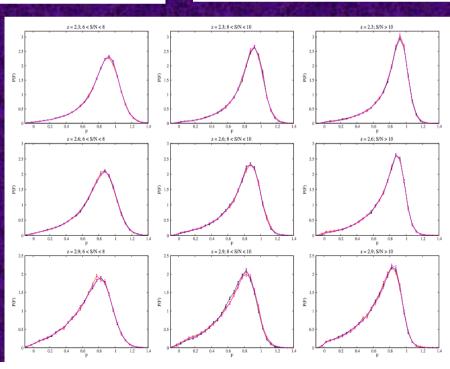
⁹⁰ universe	
60- 45- 30- (b) 15- 90 0-	270- 240- \$\hat{g}_0^2 210-
_30 - 1530 -	(g) 210 (g) 180 180 150 120
-45 -60 -75 -90 90 -75 -60 -45 -30 -15 0 15 30 45 60	75 90 0 30 60 90 120 150 180 210 240 270 300 330 360
-5290 -75 -60 -45 -30 -15 0 15 30 45 60 b _v (deg)	75 90 0 30 60 90 120 150 180 210 240 270 300 330 360 ℓ_v (deg)


LSST can make unique

			South $(b_{\rm v} < -20^{\circ})$		
$V_{\rm bulk} ({\rm km s^{-1}})$	$(\Delta b, \Delta \ell)$	$(\delta b, \delta \ell)$	$(\Delta b, \Delta \ell)$	$(\delta b, \delta \ell)$	
400	$(13^{\circ}, -3^{\circ})$	$(14^\circ, 28^\circ)$	$(-12^{\circ},2^{\circ})$	(14°, 29°)	
800	$(15^\circ, -4^\circ)$	$(9^{\circ}, 22^{\circ})$	$(-13^\circ,2^\circ)$	(9°, 21°)	

Appleby, Shafieloo, JCAP 2014 Appleby, Shafieloo, Johnson, ApJ 2015

Falsification:


Testing Isotropy of the Universe in Matter Dominated Era through Lyman Alpha forest

Redshift range(z)	SNR	$\bar{F} \pm \Delta F$
	6 - 8	$0.826^{+0.154}_{-0.375}$
$2.15 - 2.45 \ (\bar{z} = 2.3)$	8 - 10	$0.822^{+0.138}_{-0.405}$
	> 10	$0.819^{+0.129}_{-0.487}$
	6 - 8	$0.762^{+0.172}_{-0.39}$
$2.45 - 2.75 \ (\bar{z} = 2.6)$	8 - 10	$0.758^{+0.159}_{-0.427}$
	> 10	$0.756^{+0.152}_{-0.454}$
	6 - 8	$0.69^{+0.191}_{-0.377}$
$2.75 - 3.05 \; (\bar{z} = 2.9)$	8 - 10	$0.687^{+0.181}_{-0.396}$
	> 10	$0.686^{+0.176}_{-0.413}$

- → Comparing statistical properties of the PDF of the Lyman-alpha transmitted flux in different patches
- → Different redshift bins and different signal to noise
- → Results for BOSS DR9 quasar sample Results consistent to Isotropy

Hazra and Shafieloo, JCAP 2015

Falsification: Test of Statistical Isotropy in CMB

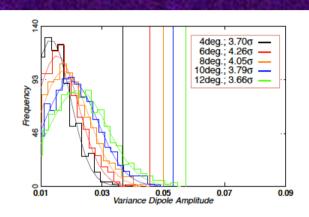


Fig. 3.— Histograms of the local-variance dipole amplitudes from the 1000 FFP6 simulations for disk radii 4°, 6°, 8°, 10° and 12°, together with the best-fit Gaussian distributions in all cases. Vertical lines indicate the corresponding amplitudes measured from the Planck data. The legend shows the rough estimates of detection significances derived from the Gaussian fits.

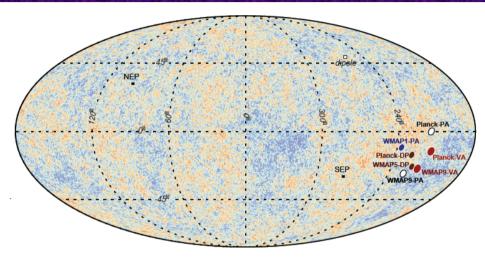
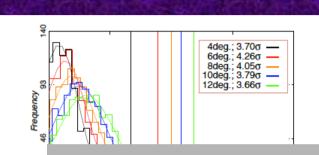
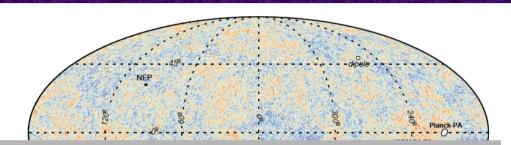


FIG. 6.— Asymmetry directions found in this work by analyzing the local variance of the WMAP 9-year and Planck 2013 data [denoted by WMAP9-VA and Planck-VA], as well as the directions found previously from the latest likelihood analyses of the dipole modulation model [denoted by WMAP5-DP (Hoftuft et al. 2009) and Planck-DP (Ade et al. 2013a)] and the local-power spectrum analyses [denoted by WMAP1-PA (Eriksen et al. 2004), WMAP9-PA (Axelsson et al. 2013) and Planck-PA (Ade et al. 2013a)] for the WMAP and Planck data.

Using Local Variance to Test Statistical Isotropy in CMB maps


- →Based on Crossing Statistic
- → Residual Analysis,
- → Real Space Analysis
- → Low Sensitivity to Systematics
- → 2D Adaptive Gaussian Smoothing
- → Frequentist Approach


TABLE 1 Asymmetry Directions

Мар	(l,b) [°]	Significance or p -value	Reference
Planck-VA	(212, -13)	0/1000	present work
WMAP9-VA	(219, -24)	10/1000	present work
Planck-DP	(227, -15)	3.5σ	Ade et al. (2013a)
WMAP5-DP	(224, -22)	3.3σ	Hoftuft et al. (2009)
Planck-PA	(224, 0)	0/500	Ade et al. (2013a)
WMAP9-PA	(227, -27)	7/10000	Axelsson et al. (2013)

Akrami, Fantaye, Shafieloo, Eriksen, Hansen, Banday, Gorski, ApJ L 2014

Falsification: Test of Statistical Isotropy in CMB

One of the persistent anomalies so far:

FIG. 3 the 100 togethe cal line Planck signific

Systematics? Astronomical? Primordial?

noted ation noted lanck

Using Local Variance to Test Statistical Isotropy in CMB maps

- →Based on Crossing Statistic
- → Residual Analysis,
- → Real Space Analysis
- → Low Sensitivity to Systematics
- → 2D Adaptive Gaussian Smoothing
- → Frequentist Approach

TABLE 1 Asymmetry Directions

Мар	(l,b) [°]	Significance or p -value	Reference
Planck-VA	(212, -13)	0/1000	present work
WMAP9-VA	(219, -24)	10/1000	present work
Planck-DP	(227, -15)	3.5σ	Ade et al. (2013a)
WMAP5-DP	(224, -22)	3.3σ	Hoftuft et al. (2009)
Planck-PA	(224, 0)	0/500	Ade et al. (2013a)
WMAP9-PA	(227, -27)	7/10000	Axelsson et al. (2013)

Akrami, Fantaye, Shafieloo, Eriksen, Hansen, Banday, Gorski, ApJ L 2014

Future surveys to test isotropy and homogeneity

- Target: testing isotropy and homogeneity
- Tools: Developing different statistical methods designed for different data and cross correlating
- Aim: Preparing for the future data, particularly LSST

Modeling the deviation

Testing deviations from an assumed model (without comparing different models)

Gaussian Processes:

Modeling of the data around a mean function searching for likely features by looking at the likelihood space of the hyperparameters.

Bayesian Interpretation of Crossing Statistic:

Comparing a model with its own possible variations.

REACT:

Risk Estimation and Adaptation after Coordinate Transformation

Gaussian Process

- → Efficient in statistical modeling of stochastic variables
- → Derivatives of Gaussian Processes are Gaussian **Processes**
- Provides us with all covariance matrices

Data

Mean Function

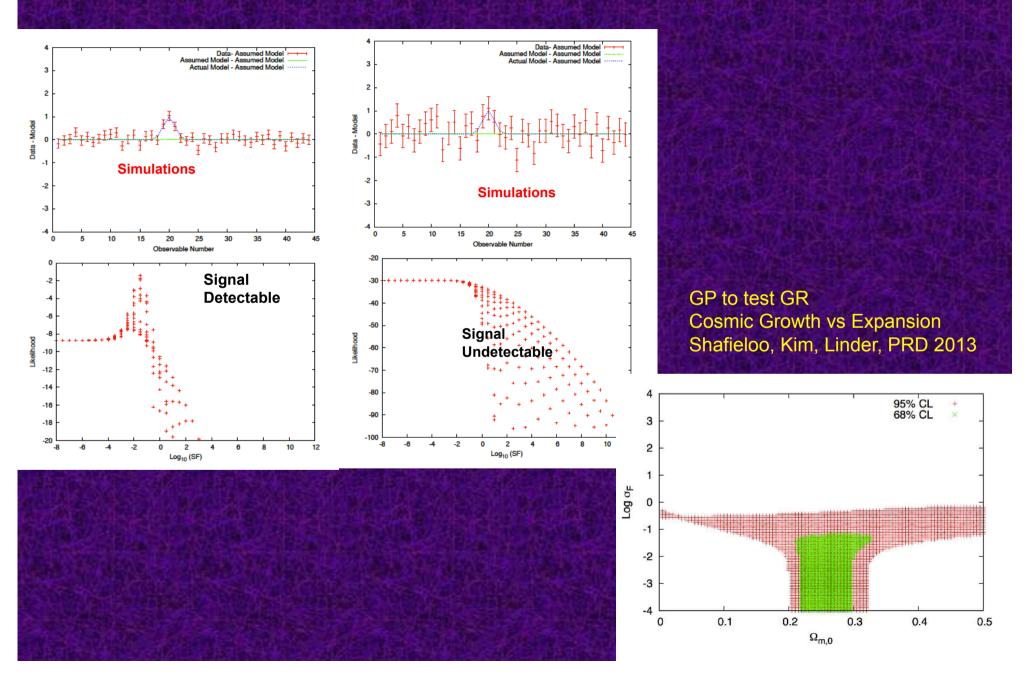
Shafieloo, Kim & Linder, PRD 2012 Shafieloo, Kim & Linder, PRD 2013

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f} \\ \mathbf{f'} \\ \mathbf{f''} \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} \mathbf{m}(\mathbf{Z}) \\ \mathbf{m}(\mathbf{Z_1}) \\ \mathbf{m'}(\mathbf{Z_1}) \\ \mathbf{m''}(\mathbf{Z_1}) \end{bmatrix}, \begin{bmatrix} \Sigma_{00}(Z,Z) & \Sigma_{00}(Z,Z_1) & \Sigma_{01}(Z,Z_1) & \Sigma_{02}(Z,Z_1) \\ \Sigma_{00}(Z_1,Z) & \Sigma_{00}(Z_1,Z_1) & \Sigma_{01}(Z_1,Z_1) & \Sigma_{02}(Z_1,Z_1) \\ \Sigma_{10}(Z_1,Z) & \Sigma_{10}(Z_1,Z_1) & \Sigma_{11}(Z_1,Z_1) & \Sigma_{12}(Z_1,Z_1) \end{bmatrix} \right), \qquad \Sigma_{\alpha\beta} = \frac{d^{(\alpha+\beta)}K}{dz_i^{\alpha}dz_j^{\beta}}$$

$$\Sigma_{\alpha\beta} = \frac{d^{(\alpha+\beta)}K}{dz_i^{\alpha}dz_j^{\beta}}$$

$$\begin{bmatrix} \frac{\overline{\mathbf{f}}}{\overline{\mathbf{f''}}} \\ \frac{\overline{\mathbf{f''}}}{\overline{\mathbf{f'''}}} \end{bmatrix} = \begin{bmatrix} \mathbf{m}(\mathbf{Z_1}) \\ \mathbf{m'}(\mathbf{Z_1}) \\ \mathbf{m''}(\mathbf{Z_1}) \end{bmatrix} + \begin{bmatrix} \Sigma_{00}(Z_1, Z) \\ \Sigma_{10}(Z_1, Z) \\ \Sigma_{20}(Z_1, Z) \end{bmatrix} \Sigma_{00}^{-1}(Z, Z) \mathbf{y}$$

Kernel
$$k(z,z') = \frac{\sigma_f^2}{2l^2} \exp\left(-\frac{|z-z'|^2}{2l^2}\right),$$

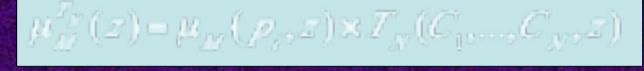

GP Hyper-parameters

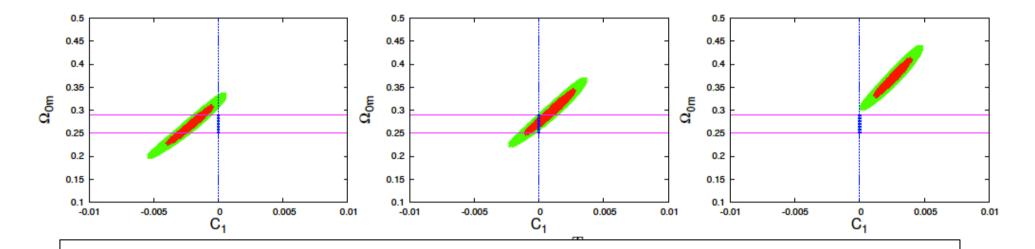
$$\operatorname{Cov}\left(\left[\begin{array}{c}\mathbf{f}\\\mathbf{f''}\\\mathbf{f''}\end{array}\right]\right) = \left[\begin{array}{cccc} \Sigma_{00}(Z_1,Z_1) & \Sigma_{01}(Z_1,Z_1) & \Sigma_{02}(Z_1,Z_1)\\ \Sigma_{10}(Z_1,Z_1) & \Sigma_{11}(Z_1,Z_1) & \Sigma_{12}(Z_1,Z_1)\\ \Sigma_{20}(Z_1,Z_1) & \Sigma_{21}(Z_1,Z_1) & \Sigma_{22}(Z_1,Z_1) \end{array}\right] - \left[\begin{array}{c}\Sigma_{00}(Z_1,Z)\\ \Sigma_{10}(Z_1,Z)\\ \Sigma_{20}(Z_1,Z) \end{array}\right] \Sigma_{00}^{-1}(Z,Z) \left[\Sigma_{00}(Z,Z_1),\Sigma_{01}(Z,Z_1),\Sigma_{02}(Z,Z_1)\right].$$

$$2 \ln p(y|f) = -y^T \Sigma_{00}(Z,Z)^{-1} y - \ln \det \Sigma_{00}(Z,Z) - n \ln(2\pi),$$

GP Likelihood

Detection of the features in the residuals




Crossing Statistic (Bayesian Interpretation)

Theoretical model

Crossing function

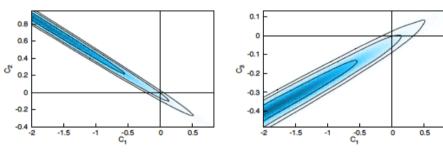
Comparing a model with its own variations

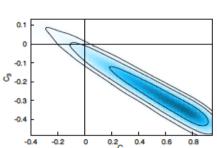
$$T_I(C_1, z) = 1 + C_1(\frac{z}{z_{max}})$$

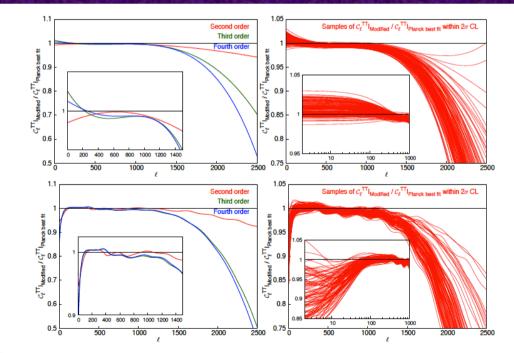
Chebishev Polynomials as Crossing Functions

$$T_{II}(C_1,C_2,z)=1+C_1(rac{z}{z_{max}})+C_2[2(rac{z}{z_{max}})^2-1],$$
 Shafieloo. JCAP 2012 (a) Shafieloo, JCAP 2012 (b)

Crossing Statistic (Bayesian Interpretation)


Theoretical model


Crossing function


$$\mathcal{C}_{\ell}^{\mathrm{TT}}\mid_{\mathrm{modified}}^{N} = \mathcal{C}_{\ell}^{\mathrm{TT}}\mid_{\Omega_{\mathrm{b}},\Omega_{\mathrm{CDM}},\mathrm{H}_{0},\tau,\mathrm{A}_{\mathrm{S}},\mathrm{n}_{\mathrm{S}},\ell} \times T_{i}(C_{0},C_{1},C_{2},...,C_{N},\ell).$$

Confronting the concordance model of cosmology with Planck 2013 data

Hazra and Shafieloo, JCAP 2014 Consistent only at 2~3 sigma CL

Dates

Issue 01 (January 2014)

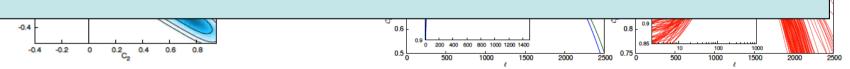
Received 13 January 2014, accepted for publication 14 January 2014

Published 28 January 2014

Crossing Statistic (Bayesian Interpretation)

Theoretical model

Crossing function

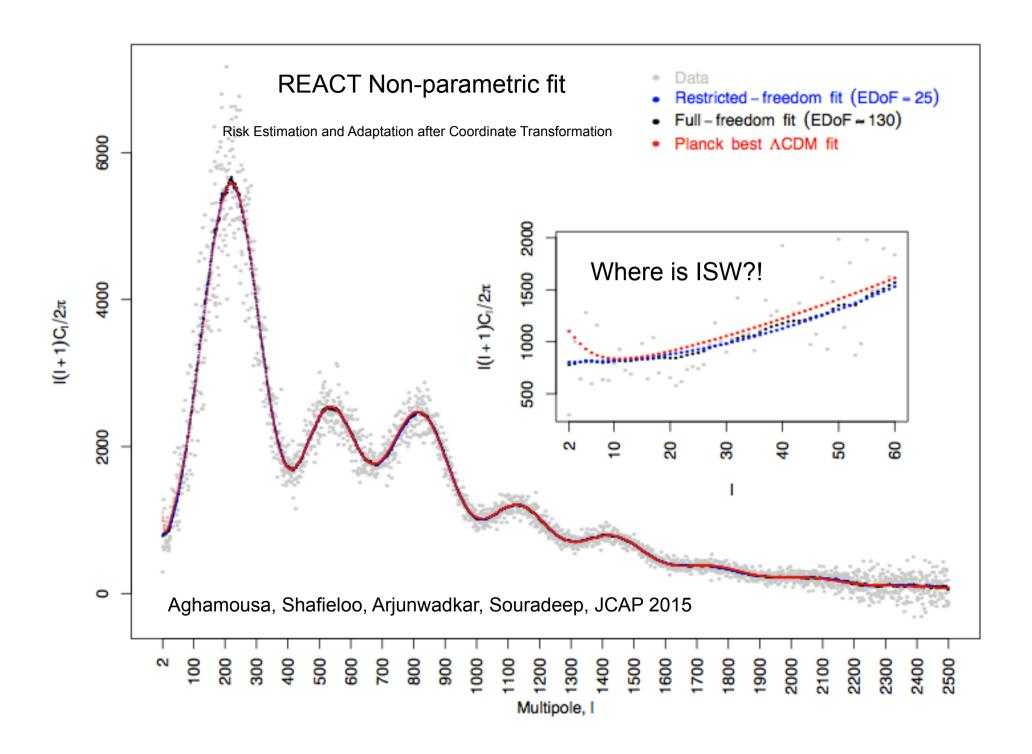

$$\mathcal{C}_{\ell}^{\mathrm{TT}}\mid_{\mathrm{modified}}^{N} = \mathcal{C}_{\ell}^{\mathrm{TT}}\mid_{\Omega_{\mathrm{b}},\Omega_{\mathrm{CDM}},\mathrm{H}_{0},\tau,\mathrm{A_{S},n_{S}},\ell} \times T_{i}(C_{0},C_{1},C_{2},...,C_{N},\ell).$$

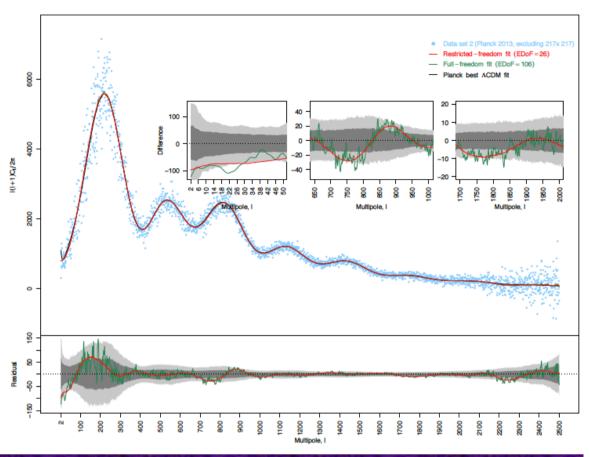
Confronting the concordance model of cosmology with Planck 2013 data

Results from PLANCK 2015 is not so exciting.

Hazra & Shafieloo 2016

-0.2

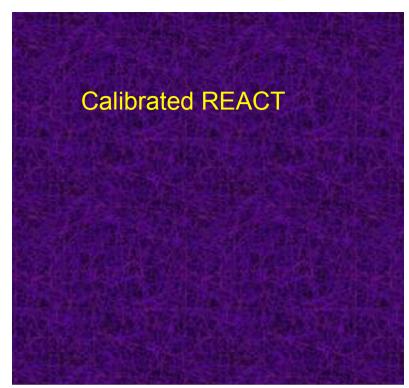


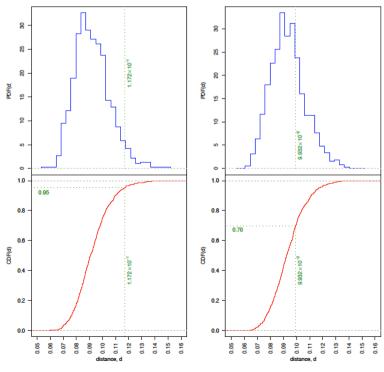

Dates

Issue 01 (January 2014)

Received 13 January 2014, accepted for publication 14 January 2014

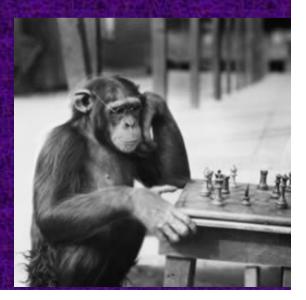
Published 28 January 2014





Consistent only at 2~3 sigma CL

Excluding 217 Ghz, consistent at 1~2 sigma CL



Conclusion

- The current standard model of cosmology seems to work fine but this does not mean all the other models are wrong. Data is not yet good enough to distinguish between various models.
- Using parametric methods and model fitting is tricky and we may miss features in the data. Non-parameteric methods of reconstruction can guide theorist to model special features.
- First target can be rigorous testing of the standard 'Vanilla' model. If it is not 'Lambda' dark energy or power-law primordial spectrum then we can look further. It is possible to focus the power of the data for the purpose of falsification. Next generation of surveys are crucial for the future of cosmology (in both ways!).

Conclusion (Large Scales)

- Still something like 96% of the universe is missing. Something might be fundamentally wrong.
- We can (will) describe the constituents and pattern of the universe (soon). But still we do not understand it. Next challenge is to move from inventory to understanding, by the help of new generation of experiments.

