Aspects of Dark Energy Eschatology: Big Crunch, Big Rip and Parametrizations

L. Perivolaropoulos http://leandros.physics.uoi.gr Department of Physics University of Ioannina, Greece

Collaborators:

I. Antoniou (U. of Ioannina)A. Lykkas (U. of Ioannina)S. Nesseris (IFT, U. of Madrid, Spain)G. Pantazis (U. of Ioannina)

3rd Korea-Japan Workshop on Dark Energy KASI, Daejeon, Korea

The evolution of the Dark energy equation of state w(z) determines the type of the final state of a flat Universe.

Three main possible classes of evolution:

V < 0 : Big Crunch Singularity (Quintessence or Scalar Tensor Quintessence with Negative potential)

G. Felder et. al. Phys.Rev. D66 (2002) 023507 R. Kallosh et al, JCAP 0310 (2003) 015

w_{de}<-1 : Big Rip singularity (ghosts, scalar tensor quintessence)

R. Calwell, M. Kamionkwski and N. Weinberg. Phys.Rev. D66 (2002) 023507

 $-1 \le w_{de} < -1/3$: deSitter/Static island bound system-universe of Black Holes and Radiation (Quintessence, Λ CDM)

F. Adams et. al.. Int.J.Mod.Phys. D12 (2003) 1743-1750 T. Chiba, R. Takahashi and N. Sugiyama, Class.Quant.Grav. 22 (2005) 3745-3758 L. Krauss and R. Scherrer, Int.J.Mod.Phys. D17 (2008) 685-690

Questions to be addressed

Q1: How generic is the Big Crunch singularity in the presence of potentials with negative
range in scalar tensor quintessence?LP, Phys.Rev. D71 (2005) 063503

A. Lykkas, LP, Phys.Rev. D93 (2016) 4, 043513, arXiv:1511.08732

Q2: How and when does a strongly bound system dissociate before the Big Rip? What new effects emerge beyond the Newtonian approximation?

S. Nesseris, LP, Phys.Rev. D70 (2004) 123529 , astro-ph/0410309, I. Antoniou, LP arXiv:1603.02569

Q3: How can we avoid misleading conclusions when using cosmological data to fit w(z) and predict its future evolution using parameterizations? Is the CPL parameterization adequate to describe a possible non-trivial evolution of w(z)? G. Pantazis, S. Nesseris, LP,

arXiv:1603.02164

Linear Negative Potential in GR

Quintessence or Phantom scalar field Lagrangian

$$\mathcal{L} = \pm \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

Equation of state parameter

$$w = \frac{p}{\rho} = \frac{\pm \frac{1}{2}\dot{\phi}^2 - V(\phi)}{\pm \frac{1}{2}\dot{\phi}^2 + V(\phi)}$$

Linear potential:

 $V(\phi) = \mp s \ \phi$

Dynamical equations:

$$\frac{\ddot{a}}{a} = \mp \frac{1}{3M_p^2} (\dot{\phi}^2 + s \phi) - \frac{\Omega_{0m} H_0^2}{2a^3}$$
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} - s = 0$$

Cosmological Evolution

Scalar-Tensor Quintessence

Cosmological Evolution

Equation of State Parameter

 $3F_0H^2 = \rho_{DE} + \rho_m$ The dynamical equations may $-2F_0\dot{H} = \rho_{DE} + p_{DE} + \rho_m$ also be written as: $\rho_{DE} = \frac{1}{2}\dot{\phi}^2 + V - 3H^2 \left(F - F_0\right) - 3H\dot{F}$ where: $p_{DE} = \frac{1}{2}\dot{\phi}^2 - V + \ddot{F} + 2H\dot{F} + \left(2\dot{H} + 3H^2\right)(F - F_0)$ Energy conservation is $\dot{\rho}_{DE} + 3H\left(\rho_{DE} + p_{DE}\right) = 0,$ applicable in this format: $w_{DE} = -1 + \frac{\dot{\phi}^2 + \ddot{F} - H\dot{F} - 2\dot{H}(F_0 - F)}{\frac{1}{2}\dot{\phi}^2 + V - 3H^2(F - F_0) - 3H\dot{F}}$ $w_{DE} = \frac{p_{DE}}{\rho_{DE}}$ $w_{DE} = -\frac{3H^2(z) - (1+z)\left(dH^2(z)/dz\right)}{3H^2(z) - 3\Omega_0 m \left(1+z\right)^3}$

Equation of State Parameter

The evolution of w(z) above and below the critical value of λ

The Critical Values of λ

 $\ddot{\phi}\left(1+\frac{3\lambda^2}{2F}\right)+3H\left(1+\frac{3\lambda^2}{2F}\right)\dot{\phi}-\frac{\lambda}{2F}\dot{\phi}^2 = s+\frac{2\lambda s\phi}{F}-\lambda\frac{\Omega_{0m}}{2a^3}\frac{F_0}{F}$

Equation of State vs Redshift

$$\ddot{\phi}\left(1+\frac{3\lambda^2}{2F}\right) + 3H\left(1+\frac{3\lambda^2}{2F}\right)\dot{\phi} - \frac{\lambda}{2F}\dot{\phi}^2 = s + \frac{2\lambda s\phi}{F} - \lambda\frac{\Omega_{0m}}{2a^3}\frac{F_0}{F}$$

Equation of State: Constraints

Result for Question 1

Q1: How generic is the Big Crunch singularity in the presence of potentials with negative range in scalar tensor quintessence?

A1: The Big Crunch singularity in the presence of potentials with negative range in scalar tensor quintessence is not generic and can be avoided in the presence of a non-minimal coupling to gravity which for values larger than a critical value can reverse the scalar field dynamical evolution.

Q2: How does a strongly bound system dissociate before the Big Rip? What new effects emerge beyond the Newtonian approximation?

Big Rip: The dissociation of bound systems.

Phantom cosmological background (w<-1):

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} [\rho_m + \rho_x] = H_0^2 [\Omega_m^0 (\frac{a_0}{a})^3 + \Omega_x^0 (\frac{a_0}{a})^{3(1+w)}]$$

Scale factor solution:

$$a(t) = \frac{a(t_m)}{\left[-w + (1+w)\frac{t}{t_m}\right]^{-\frac{2}{3(1+w)}}}, \quad t > t_m \qquad 1 + z_m = \frac{a_0}{a_m} = \left[\frac{-(3w+1)\Omega_x^0}{\Omega_m^0}\right]^{-\frac{1}{3w}}$$

Big rip singularity:

$$t_* = \frac{w}{1+w}t_m > 0$$

Point mass metric (Newtonian approximation):

$$ds^{2} = \left(1 - \frac{2Gm}{c^{2}a(t)\rho}\right)d(ct)^{2} - a(t)^{2}(d\rho^{2} + \rho^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}))$$

S. Nesseris, LP, Phys.Rev. D70 (2004) 123529 , astro-ph/0410309,

Geodesics (Newtonian)

Point mass metric (Newtonian approximation): $ds^{2} = \left(1 - \frac{2Gm}{c^{2}a(t)\rho}\right)d(ct)^{2} - a(t)^{2}(d\rho^{2} + \rho^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}))$

Geodesics (Newtonian approximation):

$$\ddot{r} - \frac{\ddot{a}}{a}r + \frac{Gm}{r^2} - r\dot{\varphi}^2 = 0$$

$$\vec{r} = \frac{\ddot{a}}{a}r + \frac{L^2}{r^3} - \frac{Gm}{r^2}$$

$$r^2\dot{\varphi} = L$$

Stable circular orbit (no expansion):

$$\dot{\varphi}(t_0)^2 = \omega_0^2 \equiv (\frac{2\pi}{T})^2 = \frac{Gm}{r_0^3}$$

New units:
$$t_m = t_0$$
 $\overline{r} \equiv \frac{r}{r_0}, \ \overline{\omega}_0 \equiv \omega_0 t_0$ $\overline{t} \equiv \frac{t}{t_0}$

Rescaled Newtonian Geodesics:

$$\ddot{\overline{r}} + \frac{\overline{\omega}_0^2}{\overline{r}^2}(1 - \frac{1}{\overline{r}}) + \frac{2}{9}\frac{(1+3w)\overline{r}}{(-w + (1+w)\overline{t})^2} = 0$$

McVittie Metric

G. C. McVittie, Mon. Not. Roy. Astron. Soc. 93,325 (1933)

Solution of Einstein Eq. Interpolating between Schwarzschild – FRW:

$$\begin{split} ds^2 &= -(f - \frac{r^2 H^2}{c^2})d(ct)^2 - 2rHf^{-1/2}dtdr + f^{-1}dr^2 + r^2d\Omega^2 \\ f &= f(r) = 1 - 2Gm/(c^2r) \qquad r = a(t)\rho \end{split}$$

$$\ddot{r} = rf^{1/2}H'\dot{t}^2 + (1 - \frac{3Gm}{c^2r})\frac{L^2}{r^3} - \frac{Gm}{r^2} + rH^2$$

Geodesics:

$$\ddot{t} = -(1 - \frac{3Gm}{rc^2})f^{-1/2}H\dot{t}^2 - \frac{2Gm}{r^2}f^{-1}\dot{t}\dot{r} + f^{-1/2}H$$

$$\chi \dot{t}^2 + 2\frac{\alpha \dot{t}\dot{r}}{c} - \frac{f^{-1}\dot{r}^2}{c^2} - \frac{L^2}{c^2r^2} = 1$$

B. C. Nolan, Class. Quant. Grav. 31, no. 23, 235008 (2014)

$$\chi(t,r) = f - \frac{r^2 H^2}{c^2}, \quad \alpha(t,r) = \frac{r f^{-1/2} H}{c}$$

Rescaled Geodesics

Dimensionless quantities:
$$\bar{t} \equiv t/t_0, \ \bar{\tau} \equiv \tau/t_0$$

 $\bar{r} \equiv r/r_0, \ \bar{m} \equiv Gm/r_0c^2, \ \bar{H} \equiv Ht_0, \ \bar{\omega}_0 \equiv \omega_0t_0$

Rescaled Geodesics:

$$\begin{aligned} \ddot{\bar{r}} &= \bar{r}f^{1/2}\bar{H}'\dot{\bar{t}}^2 + (1 - \frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_0^2}{\bar{r}^3} - \frac{\bar{m}}{\bar{r}^2}(\frac{ct_0}{r_0})^2 + \bar{r}\bar{H}^2 \\ &[f - (\frac{r_0}{ct_0})^2\bar{r}^2\bar{H}^2]\dot{\bar{t}}^2 + 2(\frac{r_0}{ct_0})^2\bar{r}\bar{H}f^{-1/2}\dot{\bar{t}}\dot{\bar{r}} - \frac{\dot{\bar{r}}^2}{f}(\frac{r_0}{ct_0})^2 - \frac{\bar{\omega}_0^2}{\bar{r}^2}(\frac{r_0}{ct_0})^2 = 1 \end{aligned}$$

Effective Radial Force:

$$F_{eff} = (1 - \frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_0^2}{\bar{r}^3} - \frac{\bar{m}}{\bar{r}^2}(\frac{ct_0}{r_0})^2 \qquad (H = 0)$$

Scales for Rescaling:

$$\bar{\omega}_0 = \frac{ct_0}{r_0} \sqrt{\frac{\bar{m}}{1 - 3\bar{m}}} \qquad t_0 = t_m$$

Rescaled Geodesics

Scales for Rescaling:
$$\bar{\omega}_0 = \frac{ct_0}{r_0} \sqrt{\frac{\bar{m}}{1 - 3\bar{m}}} \qquad t_0 = t_m$$

I. Antoniou, LP arXiv:1603.02569

Rescaled Geodesics:

$$\ddot{\bar{r}} = \bar{r}f^{1/2}\bar{H}'\dot{\bar{t}}^2 + (1 - \frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_0^2}{\bar{r}^3} - \frac{(1 - 3\bar{m})\bar{\omega}_0^2}{\bar{r}^2} + \bar{r}\bar{H}^2$$

$$[f - \frac{\bar{r}^2 \bar{m} \bar{H}^2}{\bar{\omega}_0^2 (1 - 3\bar{m})}]\dot{\bar{t}}^2 + \frac{2\bar{m}}{\bar{\omega}_0^2 (1 - 3\bar{m})} \bar{r} \bar{H} f^{-1/2} \dot{\bar{t}} \dot{\bar{r}} - \frac{\dot{\bar{r}}^2}{f \bar{\omega}_0^2} \frac{\bar{m}}{1 - 3\bar{m}} - \frac{\bar{m}}{\bar{r}^2 (1 - 3\bar{m})} = 1$$

Newtonian limit:
$$\bar{m} \equiv \frac{Gm}{c^2 r_0} \to 0$$
 $f = 1 - \frac{2Gm}{c^2 r} \to 1$

Effective Potential

Rescaled Geodesics:

$$\ddot{\bar{r}} = \bar{r}f^{1/2}\bar{H}'\dot{\bar{t}}^2 + (1 - \frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_0^2}{\bar{r}^3} - \frac{(1 - 3\bar{m})\bar{\omega}_0^2}{\bar{r}^2} + \bar{r}\bar{H}^2$$

$$\left[f - \frac{\bar{r}^2 \bar{m} \bar{H}^2}{\bar{\omega}_0^2 (1 - 3\bar{m})}\right] \dot{\bar{t}}^2 + \frac{2\bar{m}}{\bar{\omega}_0^2 (1 - 3\bar{m})} \bar{r} \bar{H} f^{-1/2} \dot{\bar{t}} \dot{\bar{r}} - \frac{\dot{\bar{r}}^2}{f \bar{\omega}_0^2} \frac{\bar{m}}{1 - 3\bar{m}} - \frac{\bar{m}}{\bar{r}^2 (1 - 3\bar{m})} = 1$$

Effective force $(\dot{\bar{r}} \rightarrow 0)$:

$$F_{eff} = \bar{r}f^{1/2}\bar{H}'[\frac{1+\frac{\bar{m}}{\bar{r}^2(1-3\bar{m})}}{f-\frac{\bar{r}^2\bar{H}^2\bar{m}}{\bar{\omega}_0^2(1-3\bar{m})}}] + (1-\frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_0^2}{\bar{r}^3} - \frac{(1-3\bar{m})\bar{\omega}_0^2}{\bar{r}^2} + \bar{r}\bar{H}^2$$

Effective Potential:

$$V_{eff}(\bar{r}) = -\int_1^r F_{eff}(\bar{r}')d\bar{r}'$$

Innermost Stable Orbit

Ignoring expansion, the radial geodesic becomes:

$$\ddot{r} = (1 - \frac{3\bar{m}}{\bar{r}})\frac{\bar{\omega}_{0}^{2}}{\bar{r}^{3}} - \frac{(1 - 3\bar{m})\bar{\omega}_{0}^{2}}{\bar{r}^{2}}$$
Stationary points:

$$\vec{r} = 1, \quad \vec{r} = \frac{3\bar{m}}{1 - 3\bar{m}}$$
Stable for $r_{0} > 6Gmc^{2}$ ie $\bar{m} < \frac{1}{6}$

$$\underbrace{\frac{2000}{500}}_{0} \frac{\overline{m} = 0.15, \overline{\omega}_{0} = 300, \overline{H} = 0}{\bar{m}} < \frac{1}{6}$$

$$\underbrace{\frac{2000}{500}}_{0} \frac{\overline{m} = 0.15, \overline{\omega}_{0} = 300, \overline{H} = 0}{\bar{m}} < \frac{1}{6}$$

$$\underbrace{\frac{2000}{500}}_{0} \frac{\overline{m} = 0.19, \overline{\omega}_{0} = 300, \overline{H} = 0}{\bar{m}} < \frac{1}{6}$$

$$\underbrace{\frac{2000}{500}}_{0} \frac{\overline{m} = 0.19, \overline{\omega}_{0} = 300, \overline{H} = 0}{\bar{m}} < \frac{1}{6}$$

$$\underbrace{\frac{2000}{500}}_{0} \frac{\overline{m} = 0.19, \overline{\omega}_{0} = 300, \overline{H} = 0}{\bar{m}} < \frac{1}{6}$$

$$\underbrace{\frac{1}{5} - 200}_{-400} \frac{\overline{m}}{\overline{m}} > \frac{1}{6}$$

$$\underbrace{\frac{1}{6}}_{-600} \frac{\overline{m}}{\overline{m}} > \frac{1}{6}$$

.8

The Rip of a bound system occurs later in the Newtonian approximation (for concreteness set w=-1.2)

The bound system is dissociated in the relativistic treatment but remains bound in the Newtonian approximation

The form of the Geodesics

Numerical solution of full system (Initial conditions at $\bar{t} = 1$, \bar{r} at potential minimum, $\dot{\bar{r}} = 0$):

The dissociation time t_{rip}

The dissociation occurs earlier in the context of the relativistic approach:

System	$Mass(M_{\odot})$	Size(Mpc)	$\bar{\omega}_0$	\bar{m}	$\Delta \bar{t}_{rip}$
Solar System	1.0	2.3×10^{-9}	3.5×10^{6}	2.1×10^{-11}	$< 10^{-8}$
Milky Way Galaxy	1.0×10^{12}	1.7×10^{-2}	1.8×10^2	2.9×10^{-6}	2.4×10^{-7}
Typical Cluster	1.0×10^{15}	1.0	12	4.9×10^{-5}	5.9×10^{-5}
Accretion Disk (neutron star)	1.5	3.3×10^{-19}	4.3×10^{21}	0.22	$< 10^{-8}$
Hypothetical Large Massive	3.0×10^{20}	1.0×10^2	9.1	0.15	0.93

Result for Question 2

Q2: How does a strongly bound system dissociate before the Big Rip? What new effects emerge beyond the Newtonian approximation?

A2: In a Big Rip cosmology, a bound system dissociates earlier than anticipated in the context of the Newtonian approximation. The difference becomes appreciable only for hypothetical cosmologically large strongly bound systems.

Q3: How can we avoid misleading conclusions when using cosmological data to fit w(z) and predict its future evolution? Is the CPL parameterization adequate to describe a possible non-trivial evolution of w(z)?

G. Pantazis, S. Nesseris, LP, arXiv:1603.02164

Thawing Quintessence

Quintessence Field Evolution:

Equation of State:

 $\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0,$ $w \equiv \frac{p_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)}$

Quintessence Potential:

T. Clemson and A. Liddle M.N.R.A.S. 395 (2009) 1585-1590

Dynamical System: $x \equiv \frac{\dot{\phi}}{\sqrt{6}H}, \quad y \equiv \frac{\sqrt{V}}{\sqrt{3}H}, \quad \lambda \equiv -\frac{V_{\phi}}{V}, \quad \Gamma \equiv \frac{VV_{\phi\phi}}{V_{\phi}^{2}},$ $\frac{dx}{dN} = -3x + \sqrt{\frac{3}{2}}\lambda y^{2} + \frac{3}{2}x(1 + x^{2} - y^{2}),$ $\frac{dy}{dN} = -\sqrt{\frac{3}{2}}\lambda xy + \frac{3}{2}y(1 + x^{2} - y^{2}),$ $\frac{d\lambda}{dN} = -\sqrt{6}\lambda^{2}(\Gamma - 1)x,$

 $\Omega_{\phi} = x^2 + y^2 \qquad w(N) = \frac{x^2(N) - y^2(N)}{x^2(N) + y^2(N)}$

Equation of State

Thawing behavior: Early time freeze due to cosmic friction, late time thawing due to reduced friction

M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001), E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003).

Freezing Quintessence

The CPL parametrization is not efficient in fitting freezing quintessence (convex increasing w(z)) because it is generically concave when increasing.

All two parameter parametrizations which can reduce to Λ CDM (w=-1) and have a linear term in the expansion around a=1 have reduced efficiency in fitting freezing models.

Quality of Fit Measure

Q: How can we quantify the quality of fit of a parametrization to a given physical model?

The measure q is defined as:

$$q = \int_0^{z_{\max}} \frac{|w_{\text{num}}(z) - w_{\text{par.}}^{\text{bf}}(z)|}{z_{\max}} \, dz.$$

Alternative parametrizations:

$$w_{nCPL}(z) = w_0 + w_a (1-a)^n = w_0 + w_a \left(\frac{z}{1+z}\right)^n$$

Name	Parametrization	Type	$q_{\rm th.} \times 10^{-4}$	$q_{\rm fr.} \times 10^{-4}$
Sqrt	$w(z) = w_0 + w_a \frac{z}{\sqrt{1+z^2}}$	Thawing	5.2	787.0
CPL [33, 34]	$w(z) = w_0 + w_a \frac{z}{1+z}$	Thawing	12.8	749.0
BA [75]	$w(z) = w_0 + w_a \frac{z(1+z)}{1+z^2}$	Thawing	21.2	817.4
Sine [69]	$w(z) = w_0 + w_a \sin(z)$	Thawing	36.5	826.0
Logarithmic [71]	$w(z) = w_0 + w_a \ln(1+z)$	Thawing	52.3	628.5
MZ Model 1 [61]	$w(z) = w_0 + w_a \left(\frac{\ln(2+z)}{1+z} - \ln 2\right)$	Thawing	55.1	620.7
FSLL Model 2 [57]	$w(z) = w_0 + w_a \frac{z^2}{1+z^2}$	Thawing	58.9	643.2
Linear [60]	$w(z) = w_0 + w_a z$	Thawing	92.6	494.6
MZ Model 2 [61]	$w(z) = w_0 + w_a \left(\frac{\sin(1+z)}{1+z} - \sin(1)\right)$	Thawing	97.1	485.4
FSLL Model 1 [57]	$w(z) = w_0 + w_a \frac{z}{1+z^2}$	Thawing	170.1	1085.4
JBP [56]	$w(z) = w_0 + w_a \frac{1+z}{(1+z)^2}$	Thawing	180.2	1087.5
7CPL	$w(z) = w_0 + w_a \left(\frac{z}{1+z}\right)^7$	Freezing	187.2	84.0

G. Pantazis, S. Nesseris, LP, arXiv:1603.02164

Comparison of Parametrizations

Least squares best fit of various proposed parametrizations to a freezing quintessence model.

Fitting Simulated Data

Observational Constraints on w(z) in redshift bins

Fitting Simulated Data

Observational Constraints on w(z) in redshift bins

AIC and Quality of Fit

 $AIC = 2k - 2\ln L_{\rm c}$

AIC=2 + χ^2

Result for Question 3

Q3: How can we avoid misleading conclusions when using cosmological data to fit w(z) and predict its future evolution? In the CPL parameterization adequate to describe a possible non-trivial evolution of w(z)?

A3: Two parameter dark energy parametrizations may be divided in two classes depending on their convexity properties: Thawing and Freezing parametrizations. Fitting cosmological data with a parametrization that is not suitable for the underlying cosmological model may lead to misleading conclusions including an incorrect value for w(z=0) and/or incorrect value for the slope of w(z) at a statistically significant level.