Three Themes on Dark Energy

Federico Piazza

Nobel Prize in Physics 2011

Saul Perlmutter

National University

Brian P. Schmidt

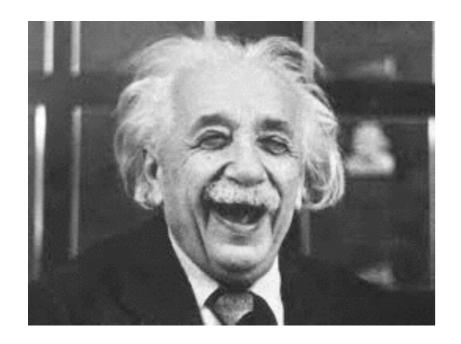
Adam G. Riess

The Universe is accelerating!

Why?!

The three themes:

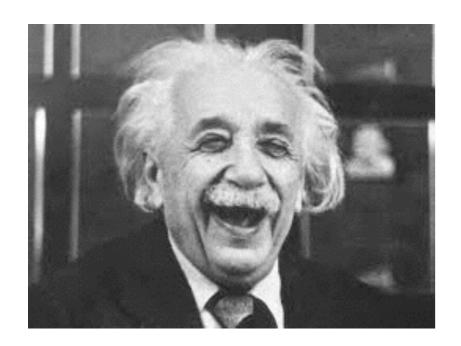
- Dark energy and modified gravity: a more systematic approach...?
- The EFT of dark energy (at work!)
- Modified gravity effects that pierce the screen



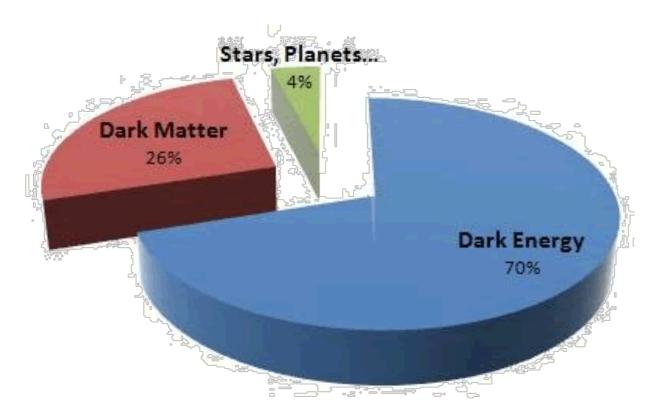
 ΛCDM

 $g_{\mu\nu} + \text{STUFF}$

Other fundamental ingredients?

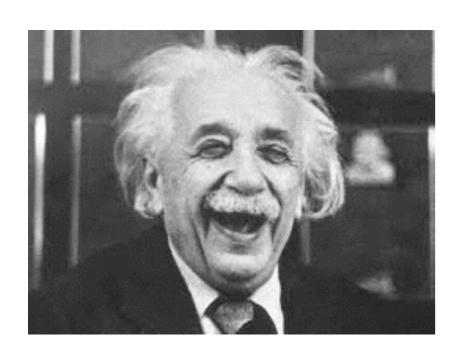


ΛCDM

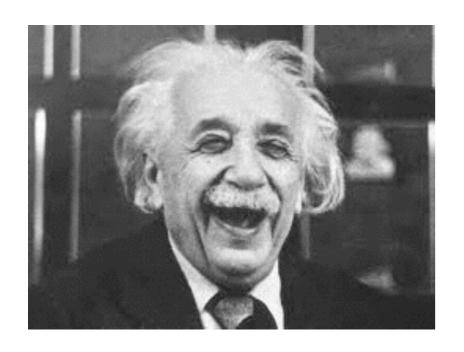


 $\Lambda \sim (10^{-3} eV)^4$

ΛCDM cosmology

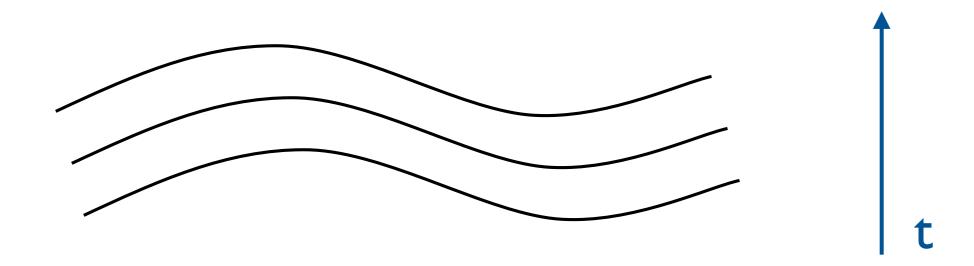


 $\begin{array}{ccc} \Lambda {\rm CDM} & {\rm The~only~consistent} \\ {\rm low~energy~theory~for} \\ {\rm a~massless~spin-two~field~} g_{\mu\nu}. \end{array}$



 $\Lambda {\rm CDM}$ The only consistent low energy theory for a massless spin-two field $g_{\mu \nu}$.

 $g_{\mu\nu} + \text{STUFF}$

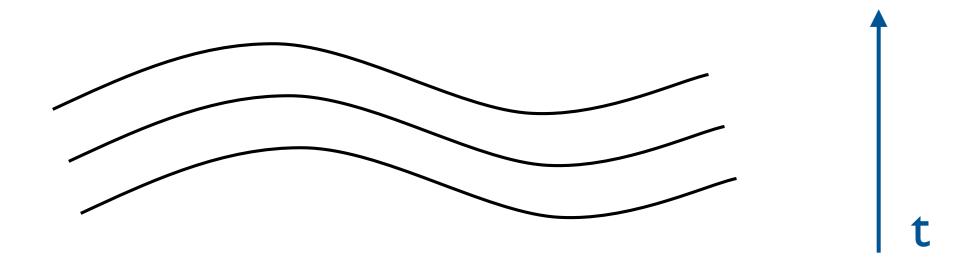


A scalar field, ok, but more importantly (and more deeply?)... Minkowski:

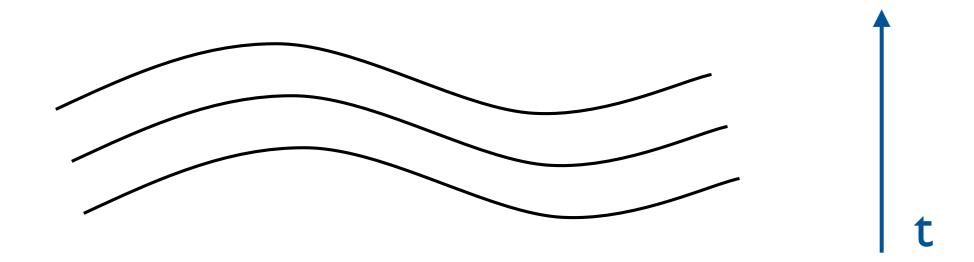
Internal Charge

$$\phi(t)$$

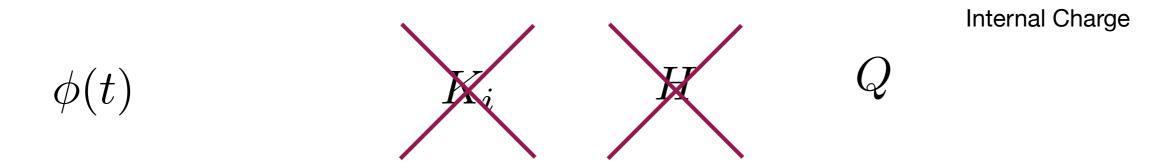
$$K_i$$

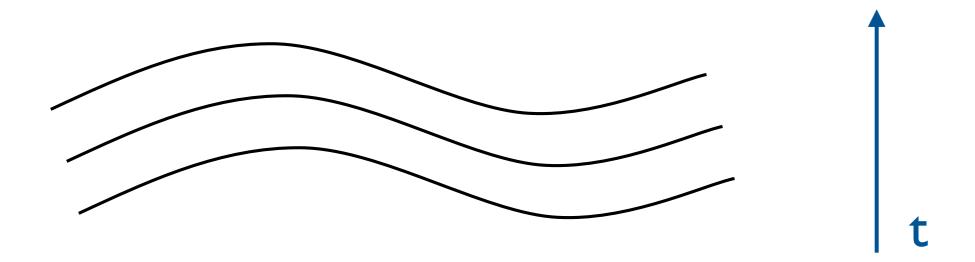


A scalar field, ok, but more importantly (and more deeply?)... Minkowski:

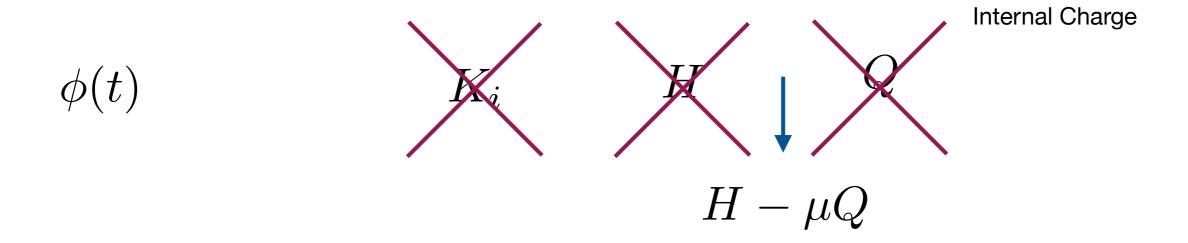


A scalar field, ok, but more importantly (and more deeply?)... Minkowski:





A scalar field, ok, but more importantly (and more deeply?)... Minkowski:



The skeleton of MG: Minkowski theory

- Poincaré invariant theory
- Fields in some representation of Lorentz group
- Boosts spontaneously broken
- Unbroken translations and rotations

The skeleton of MG: Minkowski theory

- Poincaré invariant theory
- Fields in some representation of Lorentz group
- Boosts spontaneously broken
- Unbroken translations and rotations

$$\left\{ egin{array}{ll} ar{P}^{\mu} & {
m translations} \ ar{J}^{i} & {
m rotations} \end{array}
ight.$$

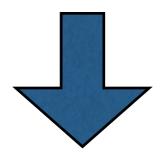
$$[\bar{J}_i, \bar{P}_j] = i\epsilon_{ijk} \,\bar{P}_k$$
$$[\bar{J}_i, \bar{J}_j] = i\epsilon_{ijk} \,\bar{J}_k$$

Classifying Condensed Matter

Full Symmetry group: Poincaré

$$\left\{ egin{array}{ll} P^{\mu} & ext{translations} \ J^{i} & ext{rotations} \ K^{i} & ext{boosts} \end{array}
ight.$$

+ internal 'Q' symmetries



$$\left\{ egin{array}{ll} ar{P}^{\mu} & ext{translations} \ ar{J}^{i} & ext{rotations} \end{array}
ight.$$

$$[\bar{J}_i, \bar{P}_j] = i\epsilon_{ijk} \,\bar{P}_k$$
$$[\bar{J}_i, \bar{J}_j] = i\epsilon_{ijk} \,\bar{J}_k$$

Classifying Condensed Matter

Ex:

$$\begin{cases} \bar{H} = H - \mu Q \\ \bar{P}^i = P^i \\ \bar{J}^i = J^i \end{cases}$$

internal symmetry: U(I)

Superfluid

I Goldstone

$$\langle \phi(x) \rangle = \mu t$$

Classifying Condensed Matter

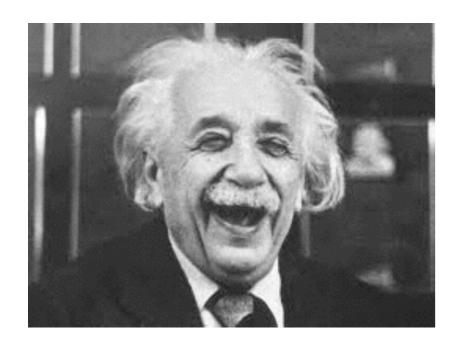
System	Modified generators			# G.B.	Internal	Extra spacetime
	P_t	P_i	J_i	# G.D.	symmetries	symmetries
1. type-I framid				3		
2. type-I superfluid	✓			1	U(1)	
3. type-I galileid		✓		1		Gal (3+1,1) 4
4. type-II framid			✓	6	SO(3)	
5. type-II galileid	✓	✓		1		Gal (3+1,1) 4
6. type-II superfluid	✓		✓	4	$SO(3) \times U(1)$	
7. solid		✓	✓	3	ISO(3)	
8. supersolid	✓	√	✓	4	$ISO(3) \times U(1)$	

Condensed matter

superfluids solids framids

Cosmology/modified gravity

shift-symmetric scalar solid inflation Einstein aether



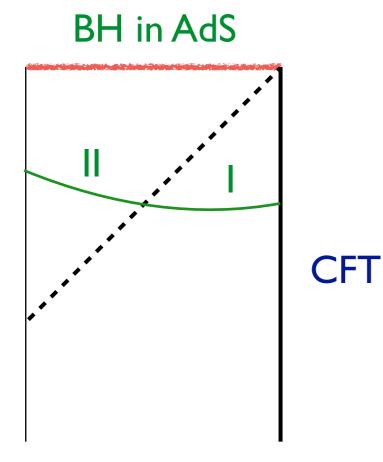
 $\Lambda {\rm CDM}$ The only consistent low energy theory for a massless spin-two field $g_{\mu\nu}$.

 $g_{\mu\nu} + \text{STUFF}$

Other fundamental ingredients?

Where could the EFT 'mantra' be wrong?

Quantum gravity: not necessarily confined to the UV



$${\cal H}\equiv {\cal H}_I\otimes {\cal H}_{II}$$

Inside dof: duplicate of those outside

Papadodimas, Raju, 2012-2016

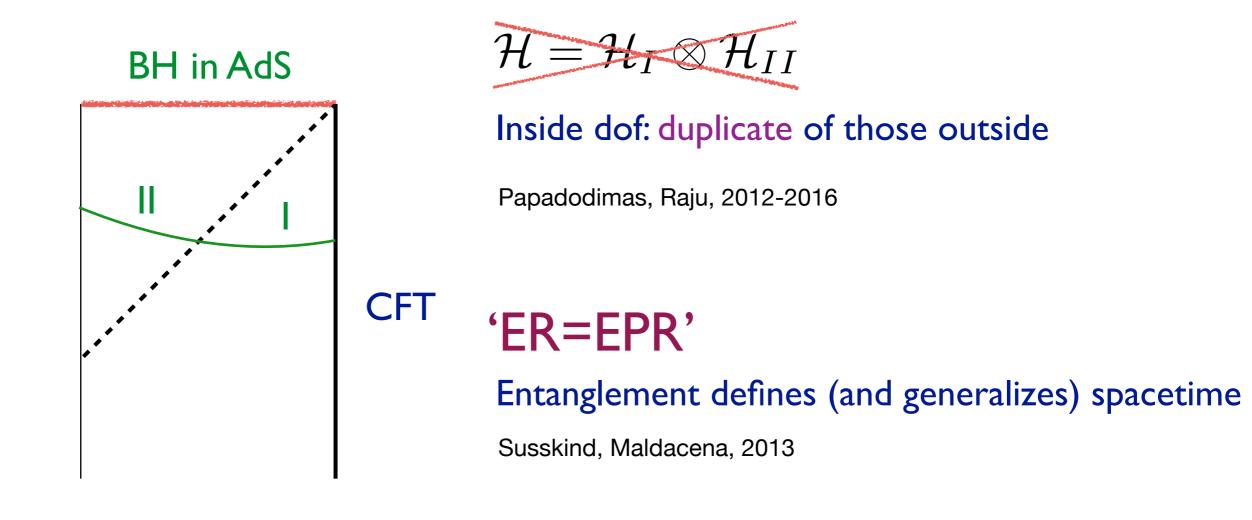
'ER=EPR'

Entanglement defines (and generalizes) spacetime

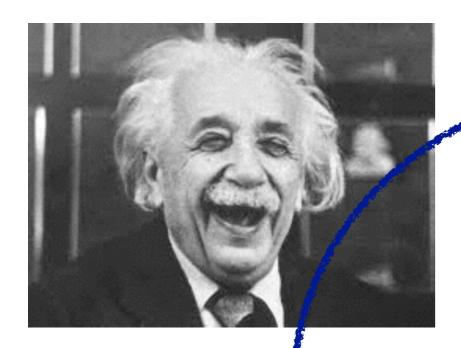
Susskind, Maldacena, 2013

Where could the EFT 'mantra' be wrong?

Quantum gravity: not necessarily confined to the UV



In cosmology these effects are expected to be small



ΛCDM

EFT of DE

+ a scalar field ϕ $g_{\mu\nu} + \text{STUFF}$

$$g_{\mu\nu} + \text{STUFF}$$

Other fundamental ingredients?

The effective field theory (EFT) of dark energy

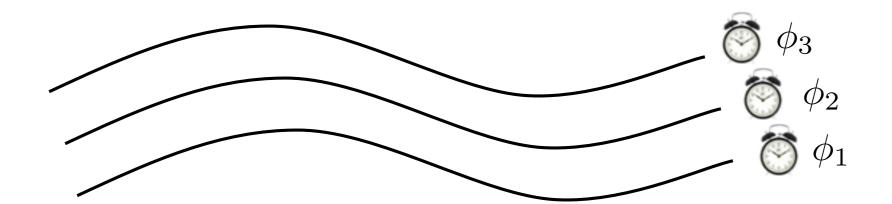
- Most general description of 1 scalar degree of freedom added to GR
- Matter universally coupled (Weak equivalence principle)
- Cosmological perturbations as the relevant objects of the theory
- Background (0th order) and perturbation (linear and +) sectors
- Good parameter space to constrain with data (see Planck 2015)

Unitary gauge in Cosmology (technical detour)

The Effective Field Theory of Inflation (Creminelli et al. `06, Cheung et al. `07)

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:

$$\phi(t, \vec{x}) \to \phi_0(t) \quad (\delta\phi = 0) \quad -\frac{1}{2}\partial\phi^2 \to -\frac{1}{2}\dot{\phi}_0^2(t) \ g^{00}$$



The Action

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$

The Action

Background (expansion history)

$$S = \int d^4x \sqrt{-g} \underbrace{M^2(t)}_{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} \right]$$

$$+ \mu_2^2(t) (\delta g^{00})^2 - \mu_3(t) \, \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \, \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \, \delta g^{00}}{2} \right) + \dots$$

The Action

Background (expansion history)

$$S = \int d^4x \sqrt{-g} \underbrace{\frac{M^2(t)}{2}} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \underbrace{\mu_2^2(t)} (\delta g^{00})^2 - \underbrace{\mu_3(t)} \delta K \delta g^{00} + \underbrace{\epsilon_4(t)} \left(\delta K^{\mu}_{\ \nu} \, \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \, \delta g^{00}}{2} \right) + \dots \right]$$

only affect perturbations

Complete background separation

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$

$$\lambda(t),~\mathcal{C}(t),~\mu(t)\equiv rac{d\ln M^2(t)}{dt}$$
 $w(t)$ Expansion History $\mu_3(t)$ Growth rate, lensing etc. $\epsilon_4(t)$ $\mu_2^2(t)$ Unconstrained

Complete background separation

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$

$$\lambda(t),~\mathcal{C}(t),~\mu(t)\equiv\frac{d\ln M^2(t)}{dt}$$

$$\mu(t)$$
 Alternatively
$$\alpha_K(t),\alpha_M(t),\alpha_B(t),\alpha_T(t)$$

$$\kappa_K(t),\kappa_M(t),\kappa_B(t),\kappa_T(t)$$
 Bellini, Sawicki '14 Gleyzes, Langlois, F.P., Vernizzi `14 Gleyzes, Langlois, Vernizzi `14
$$\mu_2^2(t)$$

Alternatively

$$\alpha_K(t), \alpha_M(t), \alpha_B(t), \alpha_T(t)$$

Bellini, Sawicki '14 Gleyzes, Langlois, F.P., Vernizzi 14 Gleyzes, Langlois, Vernizzi 14

Expansion History

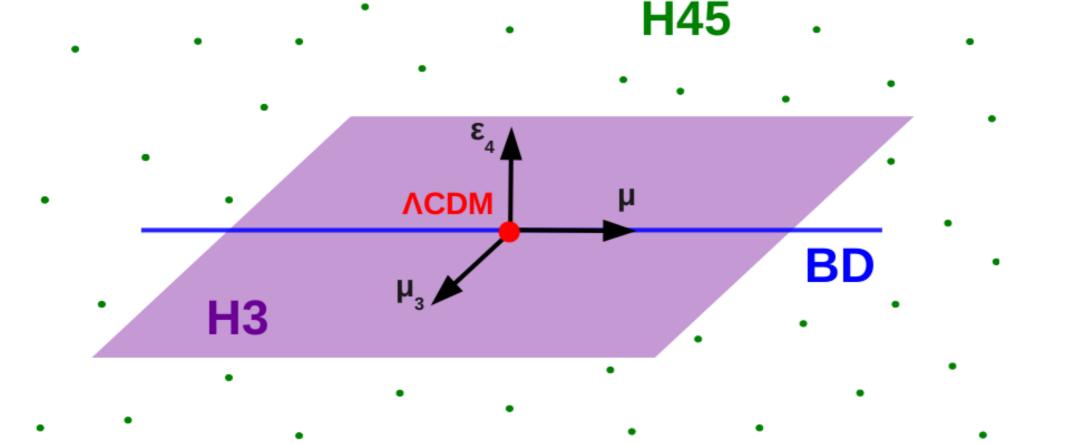
$$\mu(t)$$

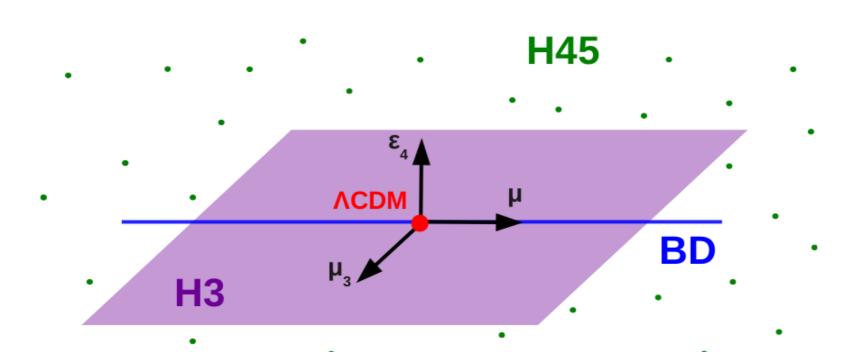
Growth rate, lensing etc.

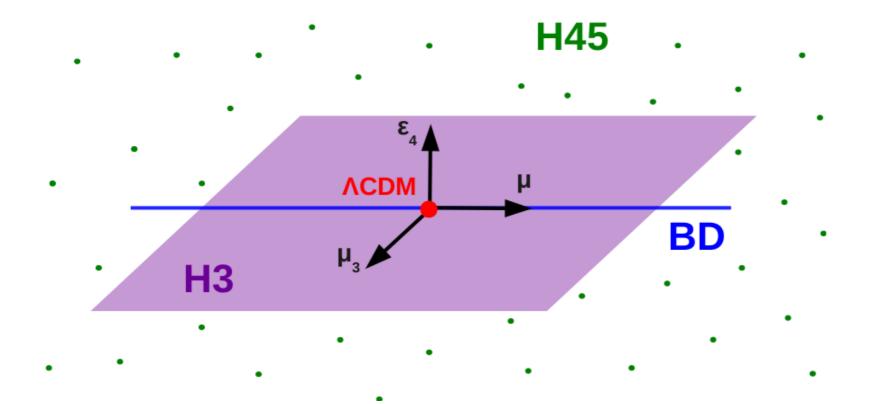
Unconstrained

The space of modified gravity

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$



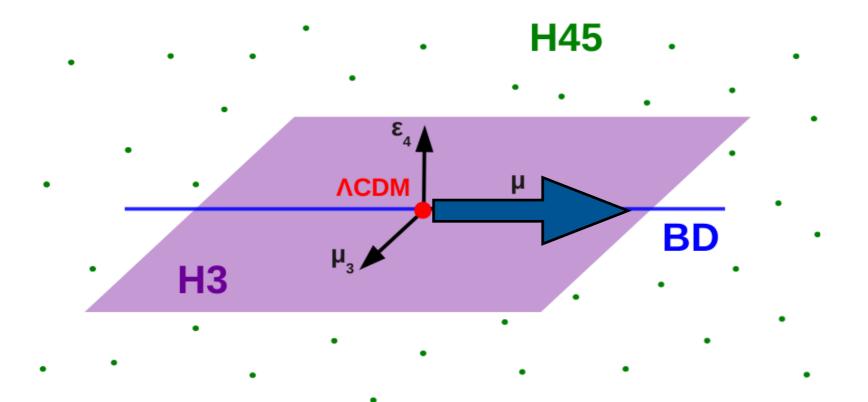




Quintessence k- essence etc.

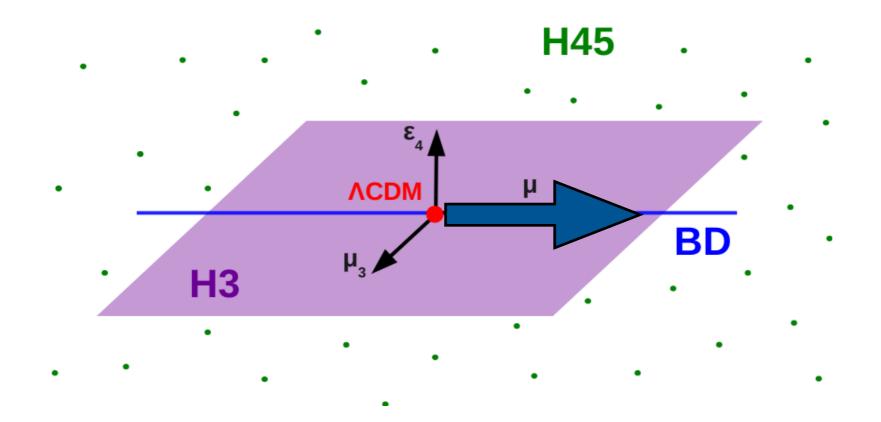
Minimally coupled $(w \neq -1)$

$$(w \neq -1)$$



The μ direction (Brans-Dicke, F(R) theories etc.)

$$\mu \equiv \frac{d \log M^2}{dt}$$



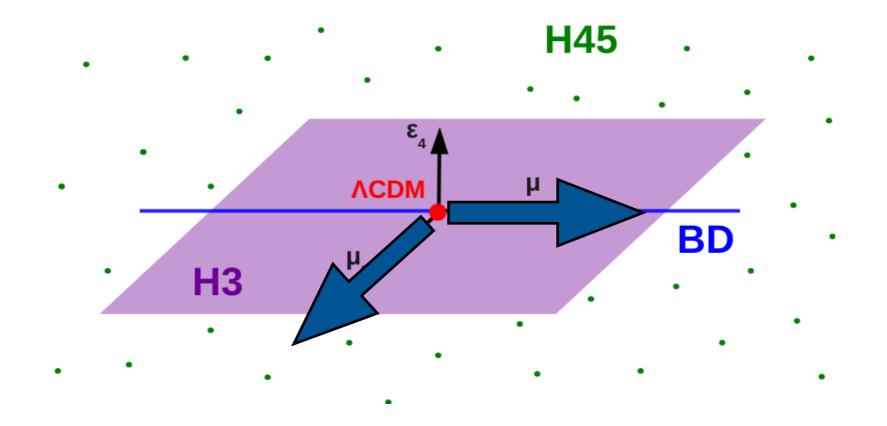
The μ direction (Brans-Dicke, F(R) theories etc.)

$$\mu \equiv \frac{d \log M^2}{dt}$$

self-acceleration

$$H^{2} = \frac{1}{3M^{2}(t)} \left[\rho_{m}(t) + \rho_{DE}(t) \right]$$

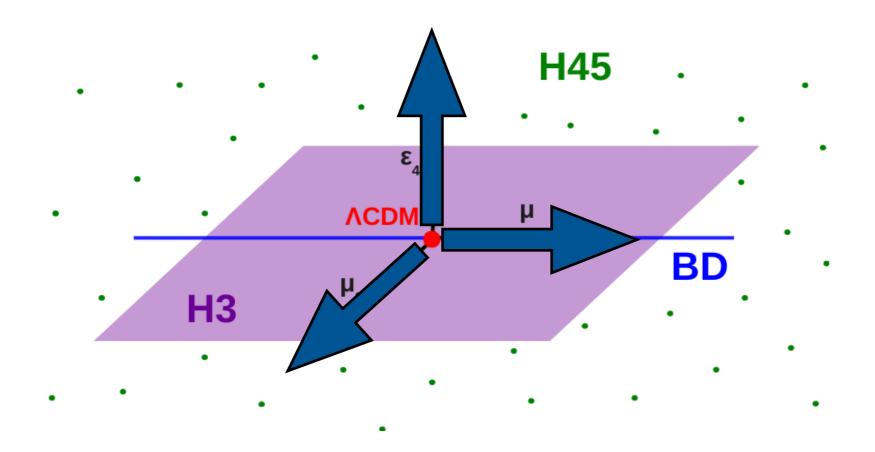
'normal' negative pressure



The µ3 direction

"Galilean Cosmology" (Chow and Khoury, 2009)

Galileon 3/ Horndeski 3



"Generalized Galileons" (= Horndeski)

(Deffayet et al., 2011)

$$\begin{split} \mathcal{L}_2 &= A(\phi, X) \;, \\ \mathcal{L}_3 &= B(\phi, X) \Box \phi \;, \\ \mathcal{L}_4 &= C(\phi, X) R - 2 C_{,X}(\phi, X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right] \;, \\ \mathcal{L}_5 &= D(\phi, X) G^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi + \frac{1}{3} D_{,X}(\phi, X) \left[(\Box \phi)^3 - 3(\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2(\nabla_{\mu} \nabla_{\nu} \phi)^3 \right] \;, \end{split}$$

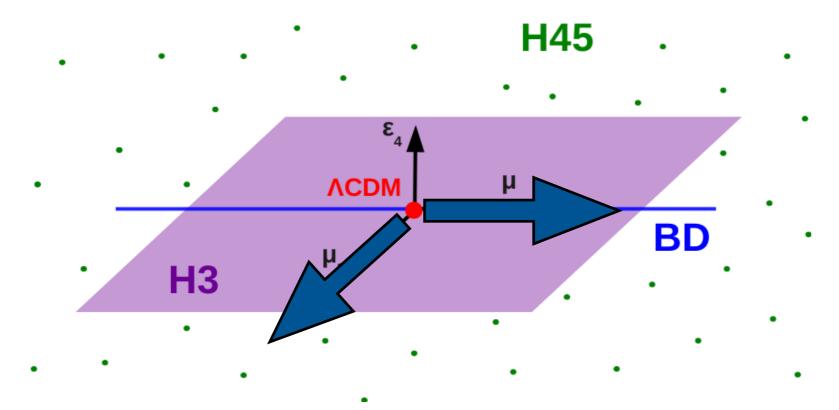
The space of modified gravity

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \, \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \, \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \, \delta K^{\nu}_{\ \mu} - \delta K^2 \right) + \frac{R^{(3)} \, \delta g^{00}}{2} \right) + \dots \right]$$

Beyond Horndeski

The most general (linear) theory without higher derivatives on the propagating degree of freedom

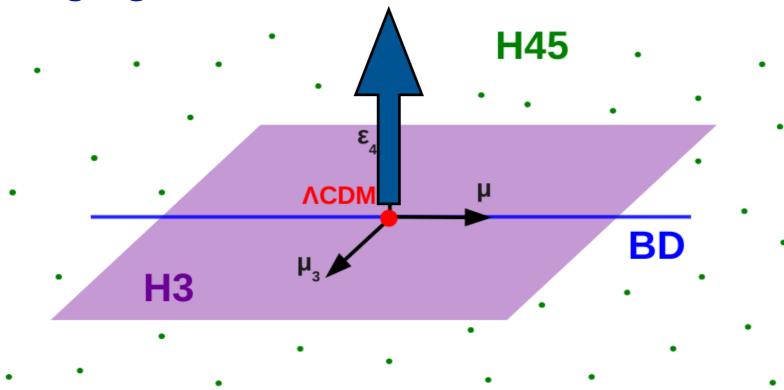
Newtonian gauge: scalar d.o.f.: Φ, Ψ, π



$$\mathcal{L} = (\mu - \mu_3) \vec{\nabla} \Phi \vec{\nabla} \pi + \dots$$

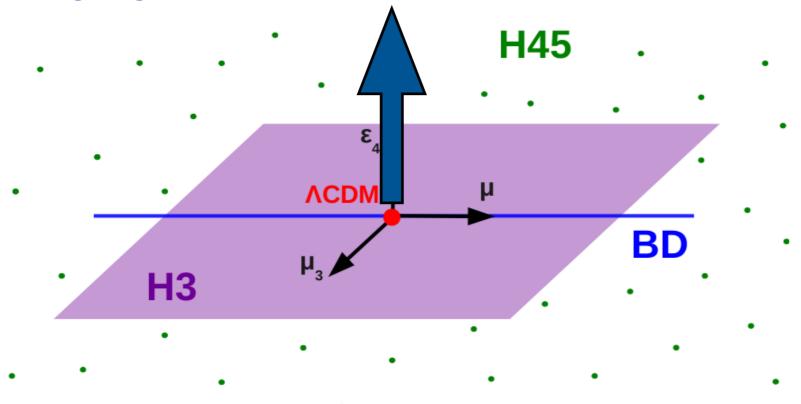
kinetic couplings metric-scalar

Newtonian gauge: scalar d.o.f.: Φ, Ψ, π



$$\mathcal{L} = (\dot{\epsilon}_4 + H\epsilon_4)\vec{\nabla}\Psi\vec{\nabla}\pi$$

Newtonian gauge: scalar d.o.f.: Φ, Ψ, π

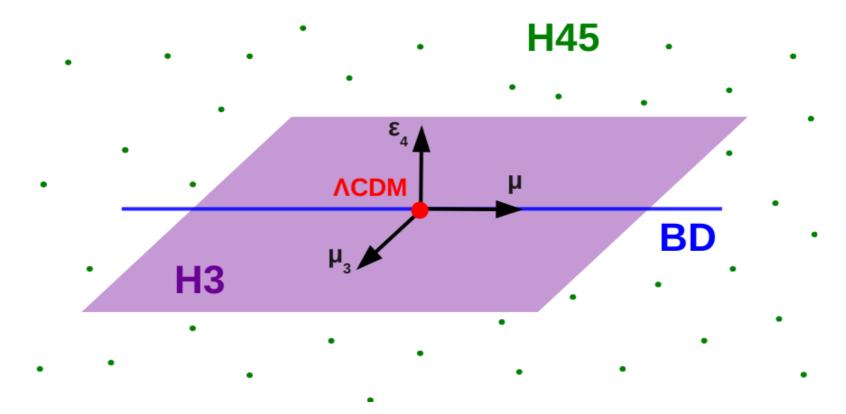


$$\mathcal{L} = (\dot{\epsilon}_4 + H\epsilon_4)\vec{\nabla}\Psi\vec{\nabla}\pi$$

$$c_T^2 = \frac{1}{1 + \epsilon_4}$$

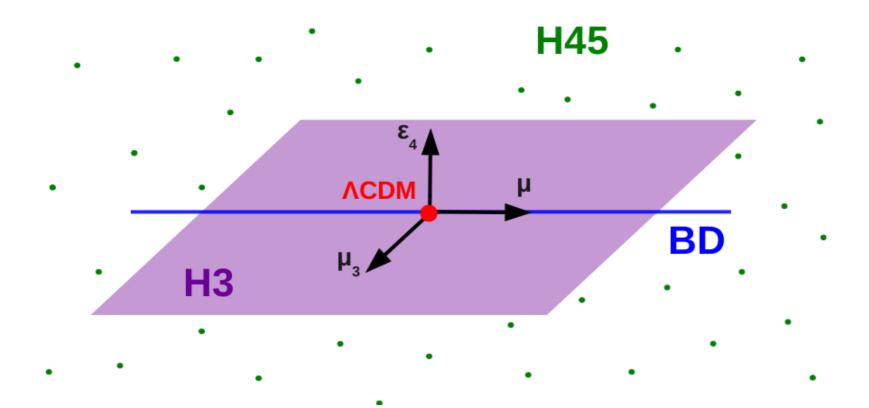
but also: speed of gravitational waves!

Newtonian gauge: scalar d.o.f.: Φ, Ψ, π



'Observables' in the perturbation sector: effective Newton constant and gravitational slip parameter

$$-\frac{k^2}{a^2}\Phi = 4\pi G_{\text{eff}}[\mu, \mu_3, \epsilon_4](t) \ \rho_m \delta_m$$
$$\frac{\Psi}{\Phi} = \gamma[\mu, \mu_3, \epsilon_4](t)$$



The space of theories: not so smooth...

Stability conditions

$$S_{\pi} = \int a^3(t) M^2(t) \left[A \left(\mu, \mu_2^2, \mu_3, \epsilon_4 \right) \, \dot{\pi}^2 \, + \, B \left(\mu, \mu_3, \epsilon_4 \right) \, \frac{(\vec{\nabla} \pi)^2}{a^2} \right] \, + \, \text{lower order in derivatives.}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\text{No ghost: A>0} \qquad \text{No gradient instabilities: B<0}$$

 $\mu_2^2 = 0$

Stability conditions

$$S_{\pi} = \int a^{3}(t)M^{2}(t) \left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2} + B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right] + \text{lower order in derivatives.}$$

No ghost: A>0

No gradient instabilities: B<0

Stability conditions

$$S_{\pi} = \int a^3(t) M^2(t) \left[A \left(\mu, \mu_2^2, \mu_3, \epsilon_4 \right) \, \dot{\pi}^2 \, + \, B \left(\mu, \mu_3, \epsilon_4 \right) \, \frac{(\vec{\nabla} \pi)^2}{a^2} \right] \, + \, \text{lower order in derivatives.}$$
No ghost: A>0 No gradient instabilities: B<0

Basic requirement

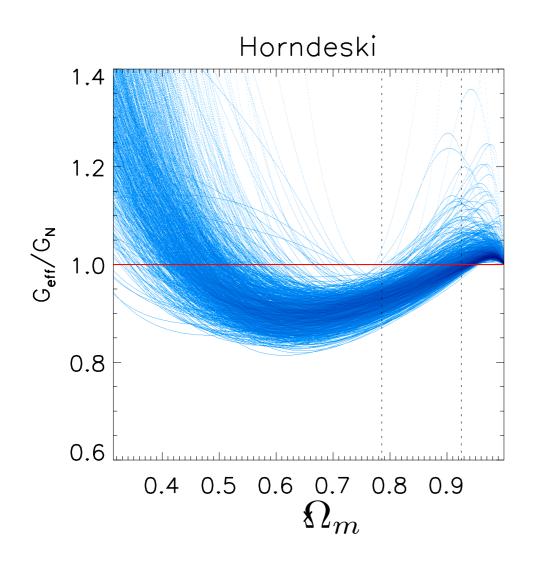
Option 1:

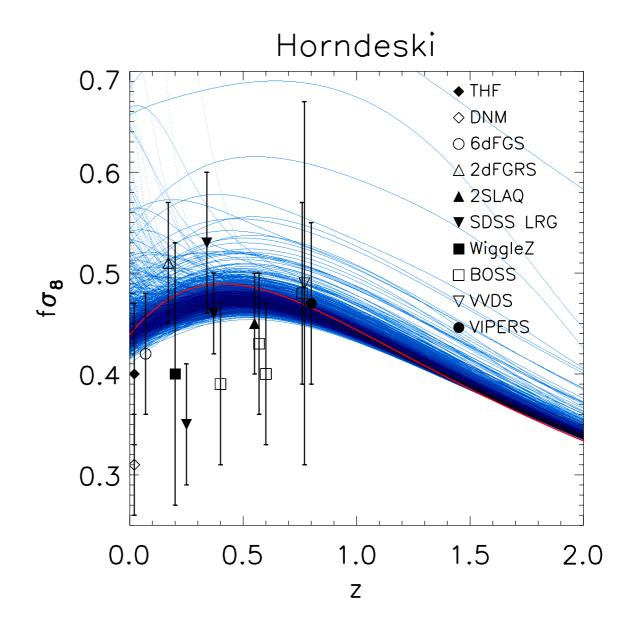
& $c_s^2 < 1$ & $c_T^2 < 1$

Option 2:

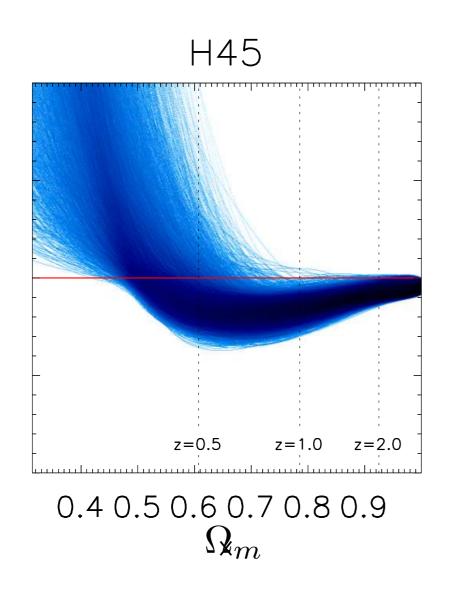
Stability requirements make a strong selection

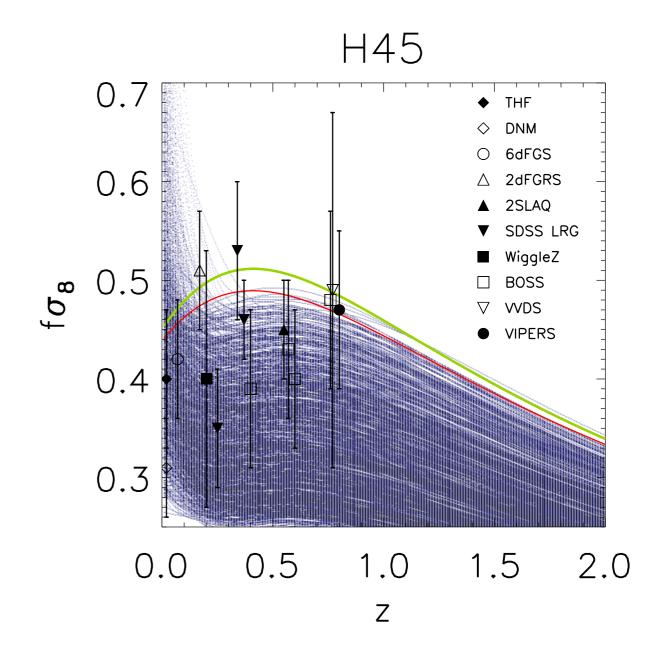
Growth rate



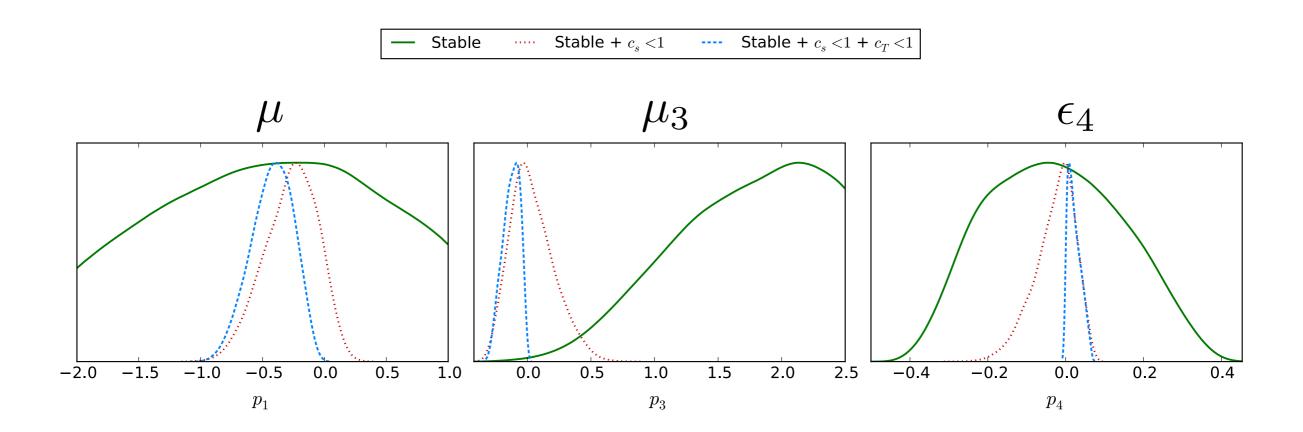


Growth rate (early DE)



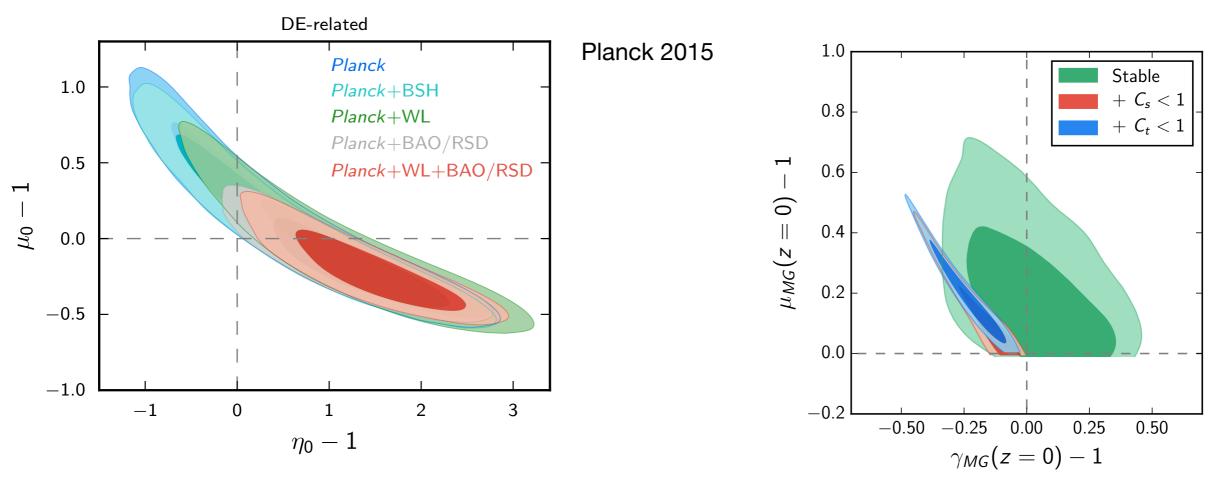


Fitting Planck 2015 CMB data



Viability conditions play an important role in determining the posteriors

Fitting Planck 2015 CMB data

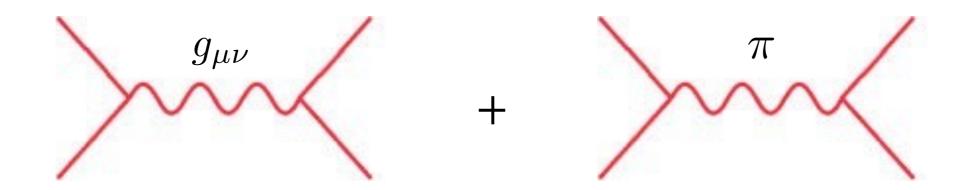


Ad-hoc parameterizations of $G_{\rm eff}$ do not correspond to actual stable theories...

CMB data alone do not show any preference for modified gravity

Protecting solar system gravity with screening

$$\mathcal{L} = -\frac{M_*^2}{2} h_{\mu\nu} \mathcal{E}^{\mu\nu}_{\alpha\beta} [\phi_0] h^{\alpha\beta} - \mathcal{A}^{\mu\nu} [\phi_0] \partial_{\mu} \pi \partial_{\nu} \pi - \pi T + \frac{1}{2} h^{\mu\nu} T_{\mu\nu}$$



On cosmic scale the scalar contributes O(1)

We need screening!

Vainshtein screening

$$\mathcal{L} = -\frac{M_*^2}{2} h_{\mu\nu} \mathcal{E}^{\mu\nu}_{\alpha\beta} [\phi_0] h^{\alpha\beta} - \mathcal{A}^{\mu\nu} [\phi_0] \partial_{\mu} \pi \partial_{\nu} \pi - \pi T + \frac{1}{2} h^{\mu\nu} T_{\mu\nu}$$

$$+ \qquad \qquad + \qquad \qquad +$$

Vainshtein: non-linear effects suppress the scalar contribution

Vainshtein screening

$$\mathcal{L} = -\frac{M_*^2}{2} h_{\mu\nu} \mathcal{E}^{\mu\nu}_{\alpha\beta} [\phi_0] h^{\alpha\beta} - \mathcal{A}^{\mu\nu} [\phi_0] \partial_{\mu} \pi \partial_{\nu} \pi - \pi T + \frac{1}{2} h^{\mu\nu} T_{\mu\nu}$$

$$+ \qquad \qquad + \qquad \qquad +$$

Vainshtein: non-linear effects suppress the scalar contribution

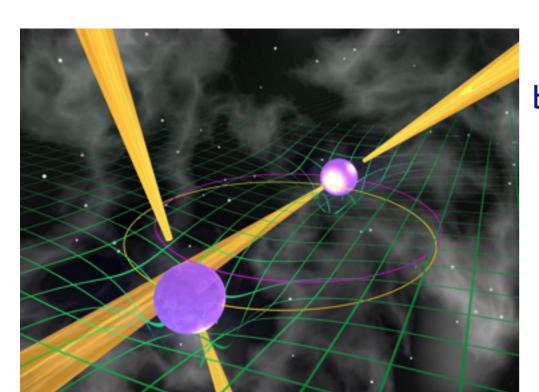
However: there can be modifications in the pure-graviton sector. This are, generally, unscreanable!

Babichev, Deffayet, Esposito-Farese 2012

Beltran, F.P., Velten, 2015

Gravitational wave speed J. Beltran, F.P., H. Velten, 2015

(as in heaven as on hearth)

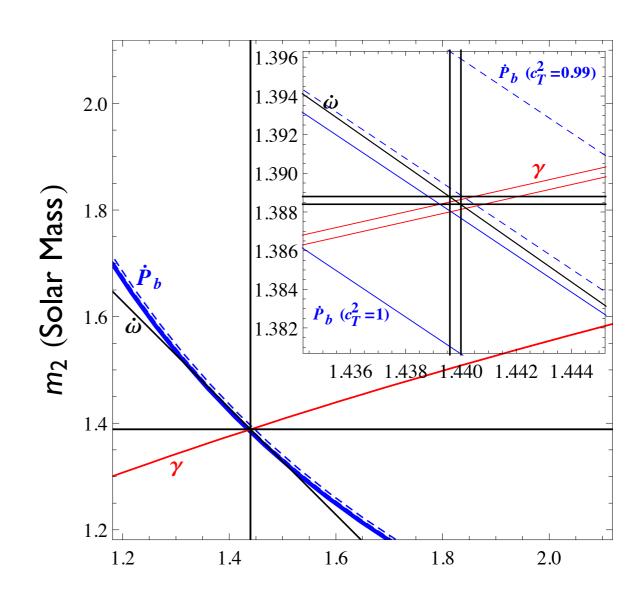


Hulse-Taylor binary pulsars

$$c_T^2 = \frac{1}{1 + \epsilon_4}$$

$$\epsilon_4 \lesssim 10^{-2}$$

See also Blas, Sanctuary 2011



A question of timing...

LES

Statistical and Quantum itum Information, etc.

strophysics

cles and Fields

r, and Optical Physics

ics, Fluid Dynamics, etc.

n Physics

er: Structure, etc.

er: Electronic Properties,

tter, Biological, and Physics Show Abstract

Gravitation and Astrophysics

Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars

Jose Beltrán Jiménez, Federico Piazza, and Hermano Velten Phys. Rev. Lett. **116**, 061101 (2016) – Published 9 February 2016 Show Abstract

Featured in Physics

Editors' Suggestion

HTML

HTML

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 (2016) – Published 11 February 2016

Gravitational waves emitted by the merger of two black holes have been detected, setting the course for a new era of observational astrophysics.

Show Abstract

1.2 1.4 1.0 1.8 2.0

The condition MG's condition is in...

$$G_N \sim \frac{1}{8\pi M^2(t_0)[1+\epsilon_4(t_0)]^2}$$

$$\frac{\dot{G}_N}{G_N} < 0.02 H_0$$
 (Lunar Laser Ranging)

self-acceleration

$$H^{2} = \frac{1}{3M^{2}(t)} \left[\rho_{m}(t) + \rho_{DE}(t) \right]$$

Final remarks

- EFT of DE powerful unifying framework
- Loads of new data from future Galaxy surveys
- Lot of data-fitting work ahead of us

