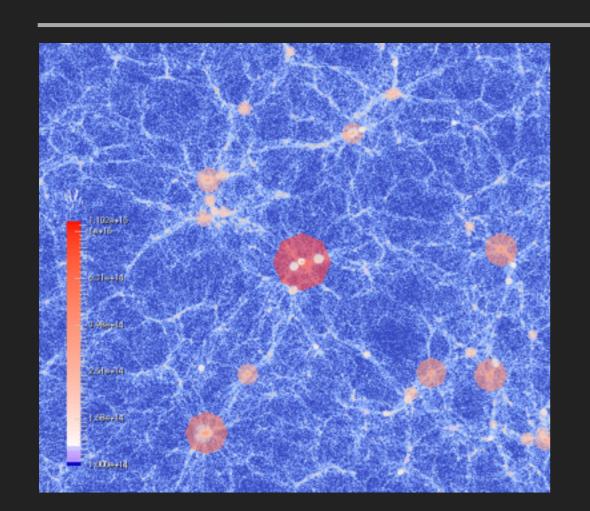
MODELING ISSUES USING N-BODY SIMULATIONS: A CASE FOR SUBARU HSC SURVEY GALAXY-GALAXY LENSING EMULATOR

TAKAHIRO NISHIMICHI (KAVLI IPMU, JST CREST)



Kavli IPMU

Takahiro Nishimichi* Masahiro Takada Naoki Yoshida

U. Tokyo

Ken Osato* Masamune Oguri

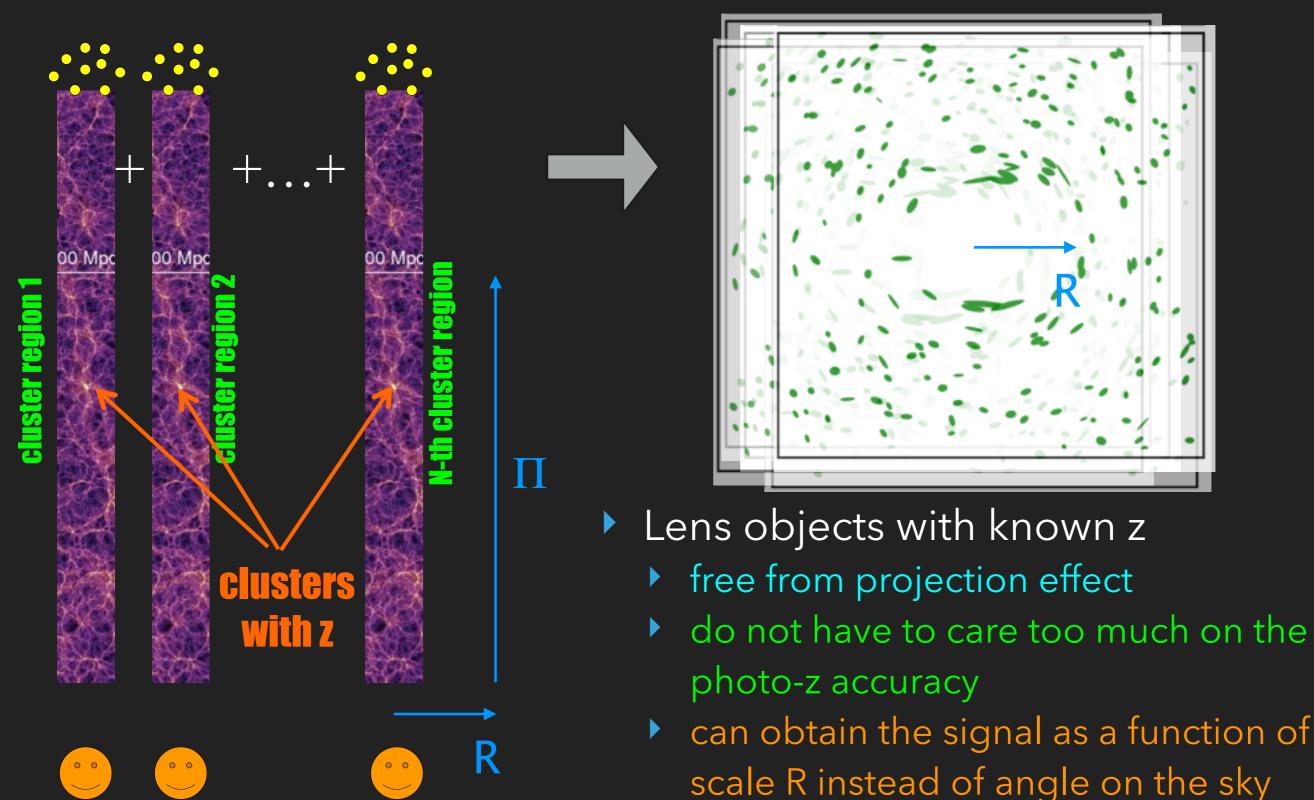
NAOJ

Masato Shirasaki* Takashi Hamana

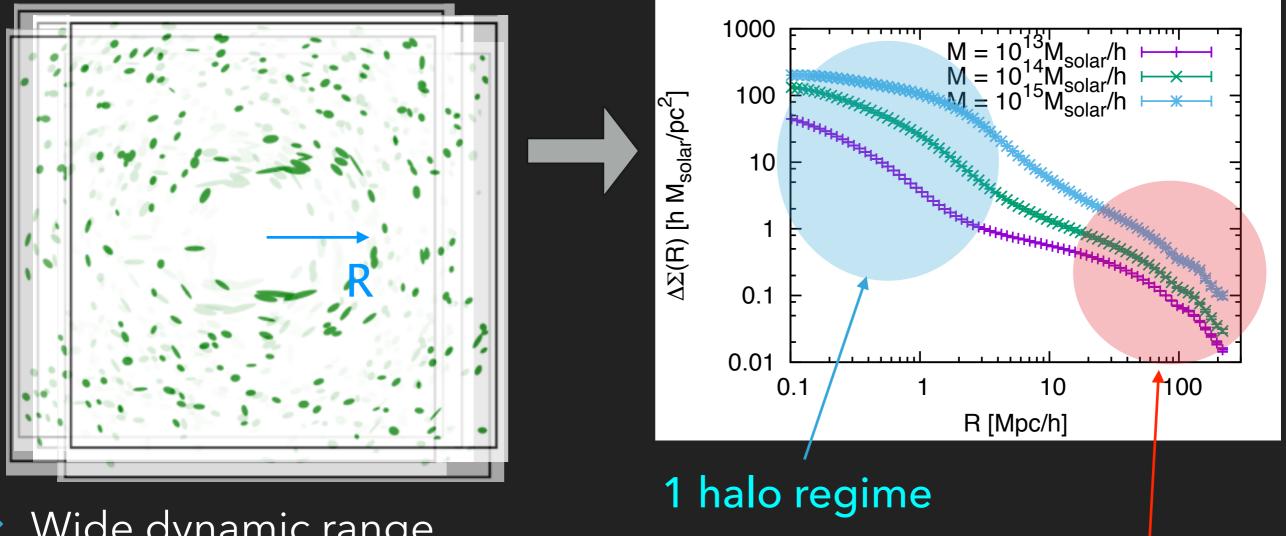
Hirosaki U.

Ryuichi Takahashi*

GALAXY(CLUSTER)-GALAXY LENSING



G-G LENSING: STACKED WEAK LENSING SIGNAL



2 halo regime with BAO

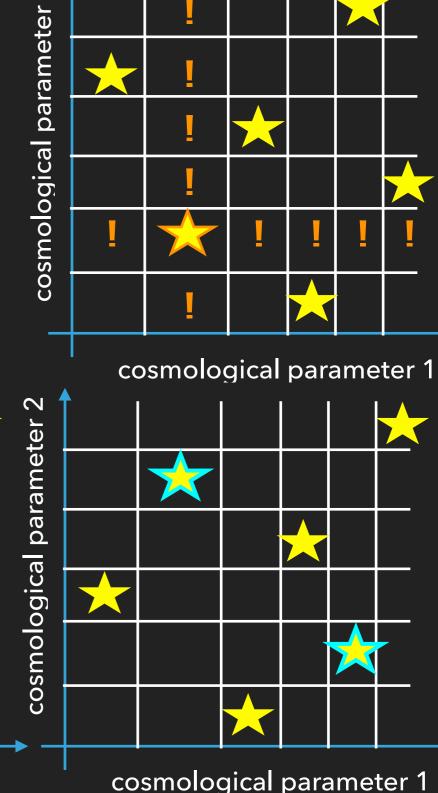
- Wide dynamic range
 - clearly PTs do not apply on small scales
 - analytical bias description still unclear
 - significant volume needed to control large scales
 - cosmological parameter dependence?

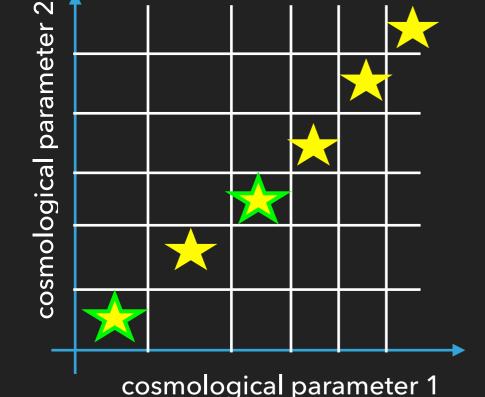
THE GOAL

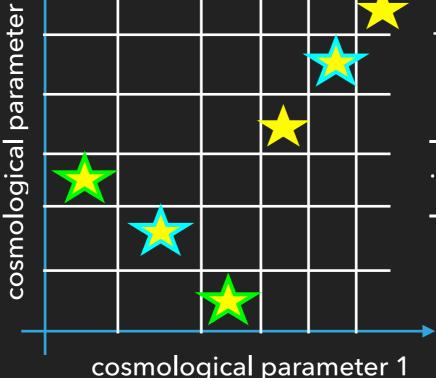
- ✓ Numerical cosmology: direct confrontation of obs and sims
- Build a machine that computes the halo mass function and excess surface mass density trained by simulation data to predict the signal in python
 - covariance is modeled separately
- ✓ Input parameters (6D + a):
 - ✓ cosmological: $ω_b$, $ω_c$, $Ω_Λ$, A_s , n_s , w (flat wCDM) → LH design
 - √ + M_h, z (halo mass function)
 - \checkmark + M_h, z, R (excess surface mass density)
- ✓ Note that we model cluster-galaxy lensing signal first, and thus
 - ✓ ignore subhalos for the moment
 - parameters to be added: satellite fraction (or HOD params), offcentering, ...

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

- Each sample is the only one in each axis-aligned hyperplane containing it
 - One can find many realizations of such design (ex. diagonal design)
 - Impose additional condition such as "the sum of the distances to the nearest design point is maximal" (maximin distance)







EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

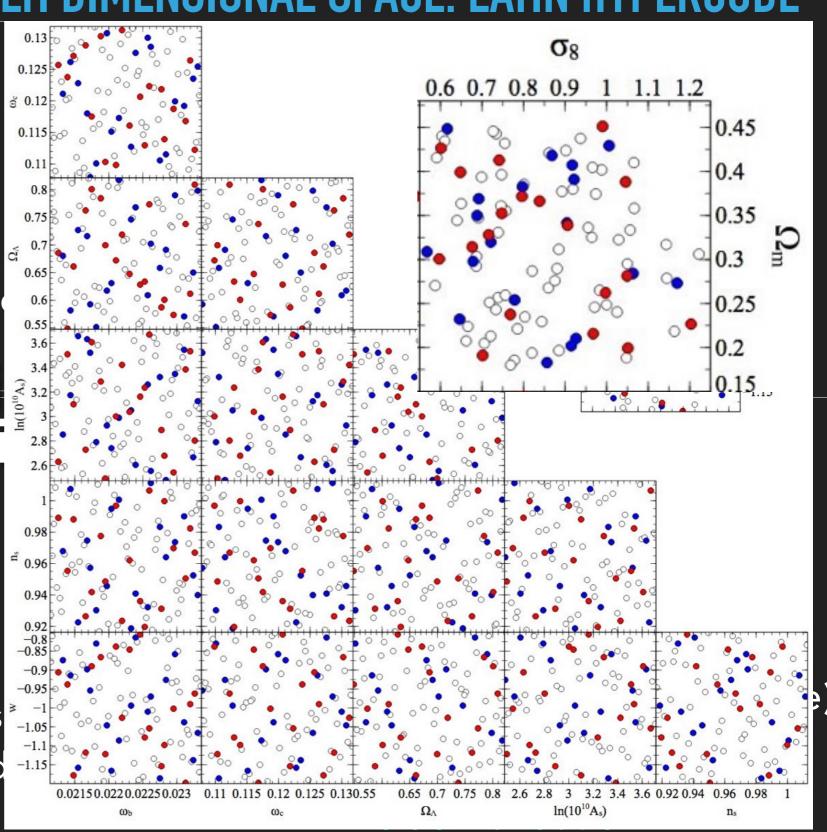
fiducial model

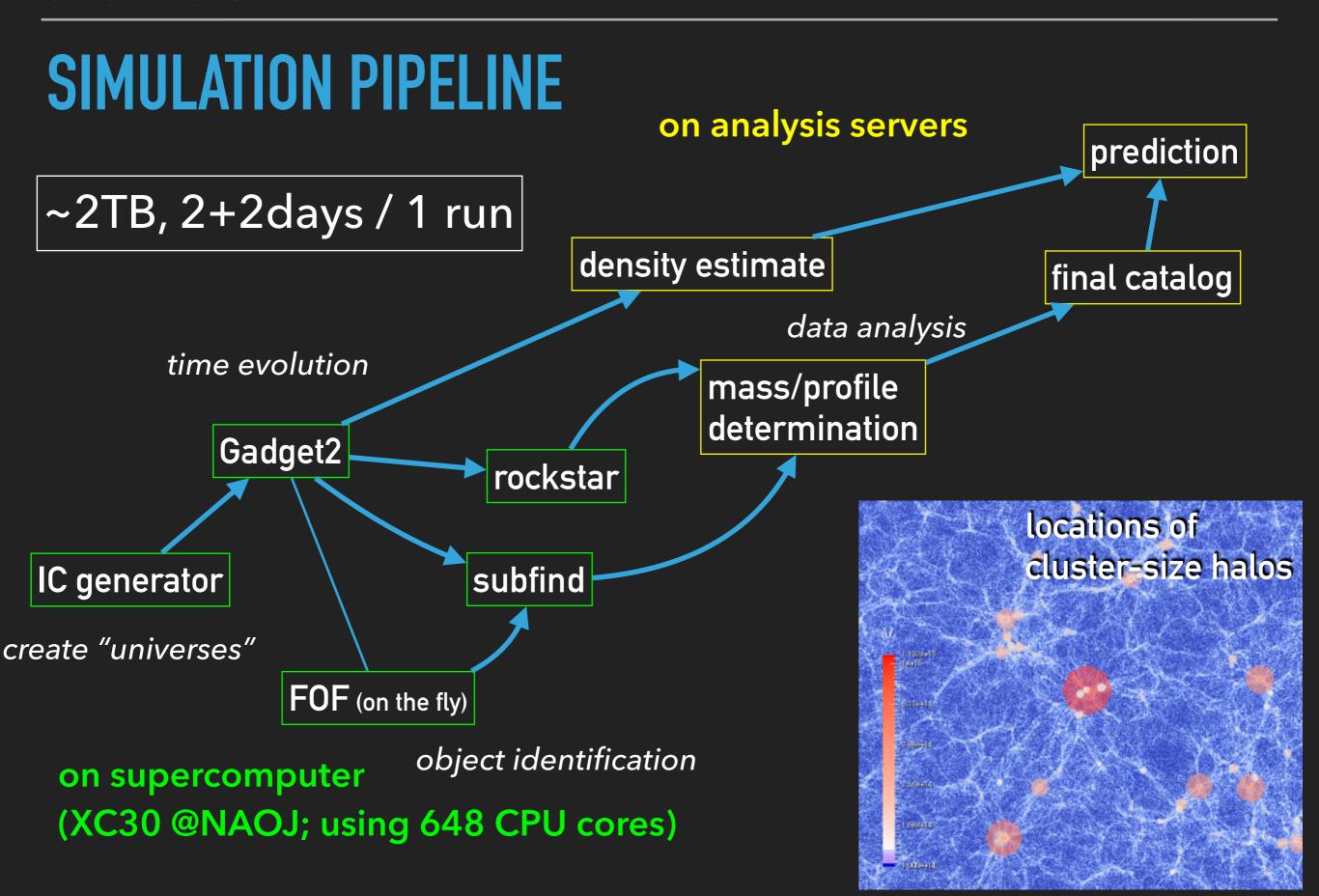
- PLANCK15 flat ΛCDM
- 24 realizations done
- assess statistical error
- check the accuracy of the emulator

84 si

varied cosmology ava

- "sliced" LH design (Ba, Brenneman & Myers '15)
- generate 100 samples eventually
- maxi-min distance LH des every 20 models (e.g., red points)





SIMULATION SPEC

- ✓ N of particles: 2048³
- ✓ box size: 1h⁻¹Gpc

resolve a $10^{12} h^{-1}M_{solar}$ halo with ~100 particles

✓ 2nd-order Lagrangian PT initial condition @ z_{in}=59

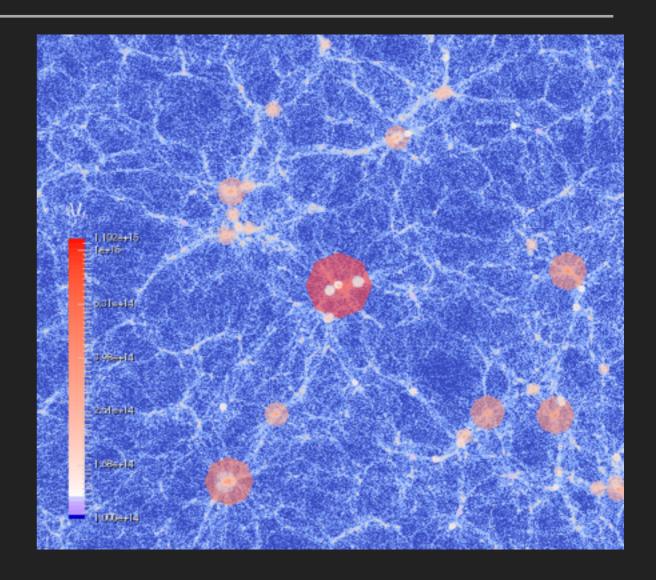
(vary slightly for different cosmologies to keep the RMS displacement about 25% of the inter-particle separation)

√ Tree-PM force by L-Gadget2
(w/ 4096³ PM mesh)

- ✓ 21 outputs in $0 \le z \le 1.5$ (equispaced in linear growth factor)
- ✓ Data compression (256GB -> 48GB par snapshot)
 - ✓ positions -> displacement (16 bits par dimension; accuracy ~1h⁻¹kpc)
 - ✓ velocity: discard after halo identification
 - ✓ ID: rearrange the order of particles by ID and then discard
 - √ already consuming ~200TB in half a year (~observational data)

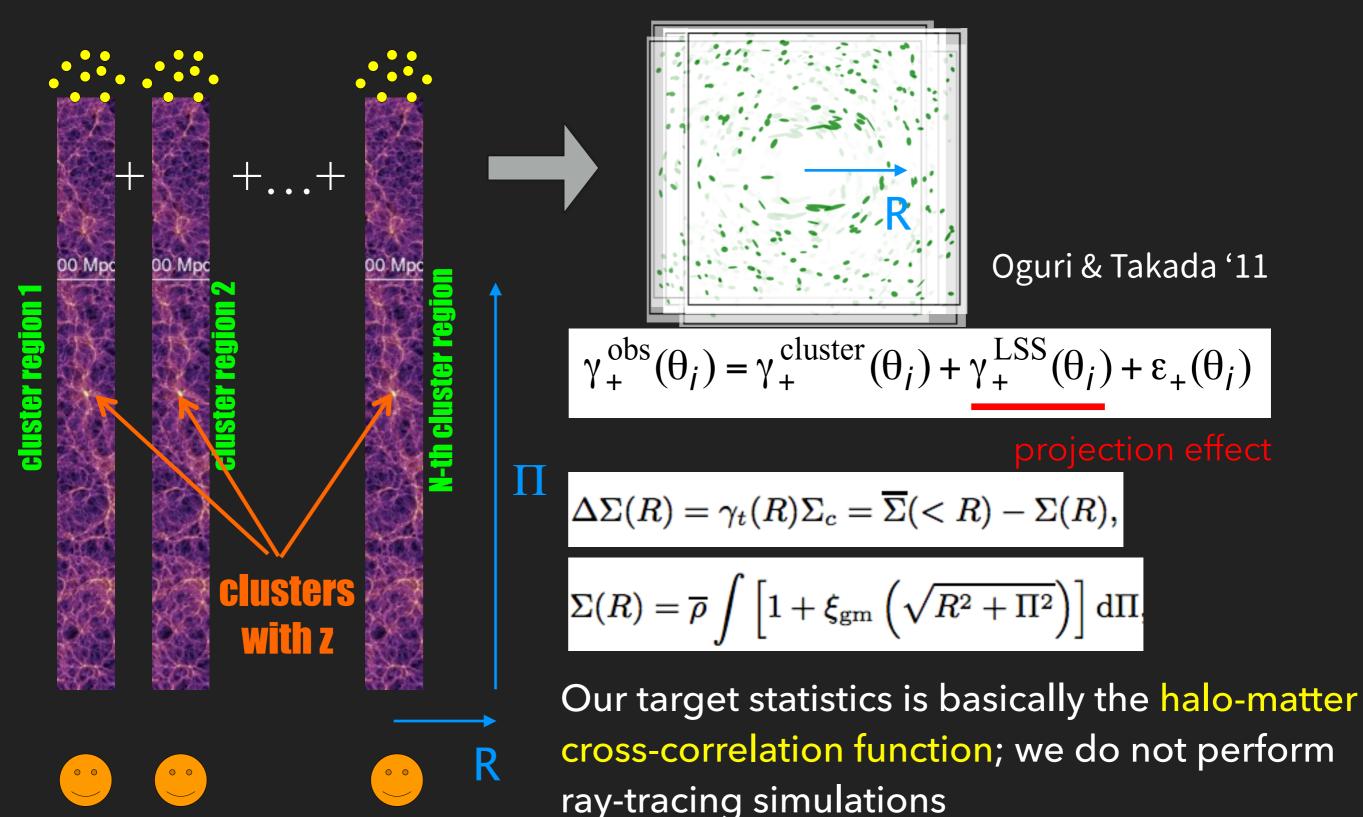
OUR HALO CATALOGS

- ✓ Halo finder
 - ▼ FOF + Subfind
 - ✓ Rockstar (+ merger tree by consistent-trees)
- ✓ Grow sphere centered at
 - ✓ core center (rockstar)
 - most bound particle (subfind)
- ✓ until the interior density reaches 200p_m to determine M_200m
 - measure and store the density profile at the same time
- ✓ Exclude "satellites" when the center is within r_200m



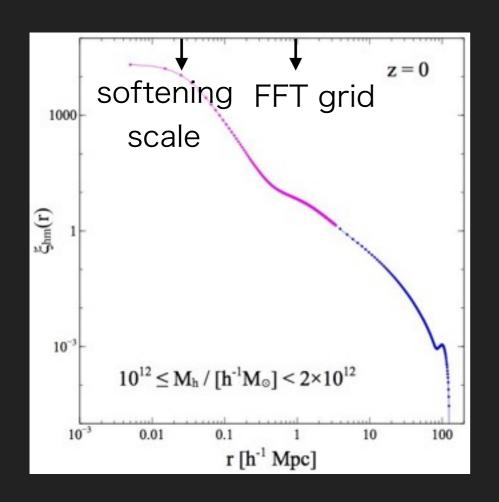
- ✓ density profile is stored for each halo up to 5Mpc/h
 - g-g lens signal is obtained immediately once the mass bin, weight and offcentering profile are given

G-G LENSING: STACKED WEAK LENSING SIGNAL



MEASURING G-G LENSING SIGNAL

- Work in 3D
- And then projection onto 2D
- Better statistics than working in 3D from the beginning
- Hybrid Fourier-direct scheme



Measure 3D cross spectrum in Fourier space

$$P_{
m hm}(ec{k})$$
 (on 1024³ mesh by FFT)

Inverse FFT to real space and take the spherical average

$$\xi_{\rm hm}(\vec{r}) \longrightarrow \xi_{\rm hm}(r)$$
 spherical avg.

 ξ_{hm} on small scale from direct pair count

Finally project onto 2D to have $\Sigma(R)$ and then $\Delta\Sigma(R)$

$$\Sigma(R) = \overline{
ho} \int \left[1 + \xi_{
m gm} \left(\sqrt{R^2 + \Pi^2}
ight)
ight] {
m d} \Pi_{
m g}$$

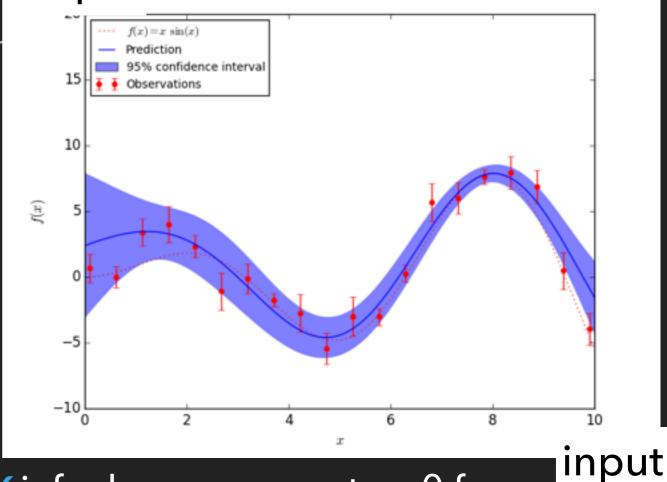
Easier accuracy control than working in 2D, and quicker than direct pair counting alone

G-G LENSING SIMULATIONS

GAUSSIAN PROCESS

- A kind of machine learning that interpolates in function space
 - non-parametic Bayesian inference
 - quick in high dimension input space
- Basic quantities (c.f., normal distribution)
 - mean function (cf. mean)
 - covariance function (cf. variance)
- ▶ mean can be anything, set zero usually
- covariance function is characterized by a simple function with several hyper parameters

output



√ infer hyper parameters θ from training data (x_i, t_i)

Given any input x_{N+1} , infer t_{N+1} from θ and (x_i, t_i)

$$P(t_{N+1} | \mathbf{t}_N) \propto \exp \left[-\frac{1}{2} \left[\mathbf{t}_N \ t_{N+1} \right] \mathbf{C}_{N+1}^{-1} \left[\frac{\mathbf{t}_N}{t_{N+1}} \right] \right]$$

ex.
$$C(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \theta_1 \exp \left[-\frac{1}{2} \sum_{i=1}^{I} \frac{(x_i - x_i')^2}{r_i^2} \right] + \theta_2.$$

answer:

$$\hat{t}_{N+1} = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}_N
\sigma_{\hat{t}_{N+1}}^2 = \kappa - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}.$$

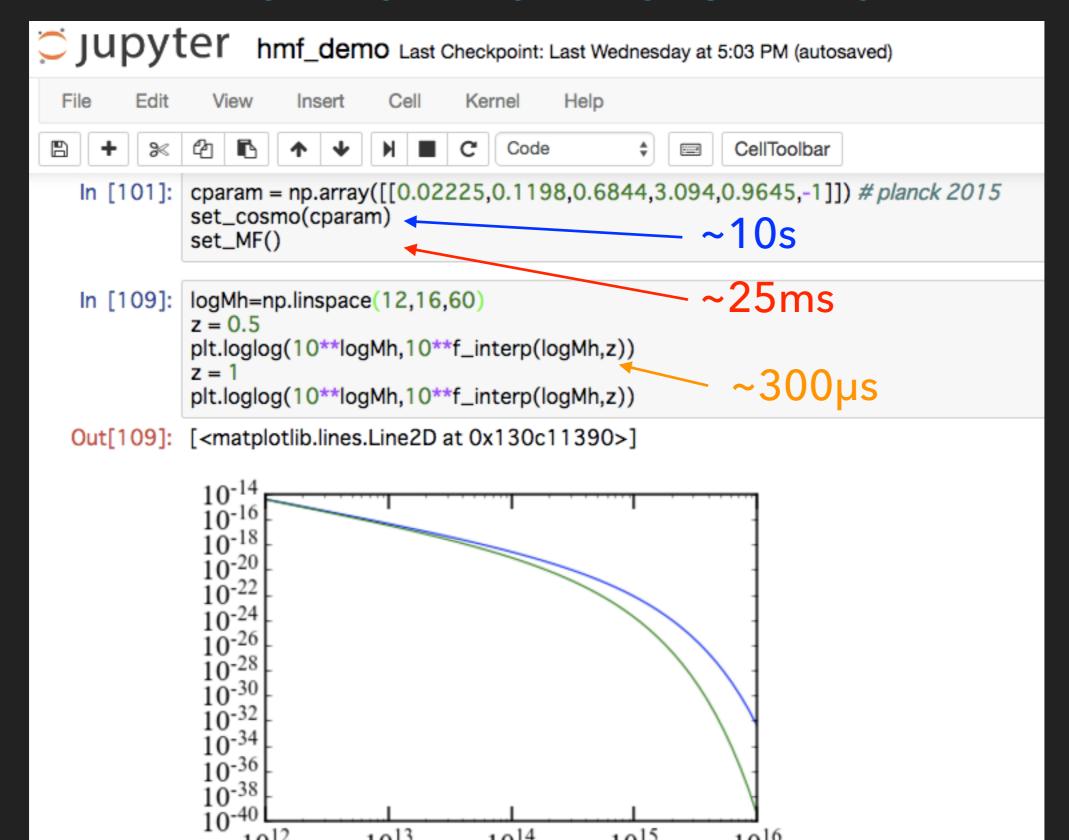
OUR HMF EMULATOR

• fit by the well-established functional form:

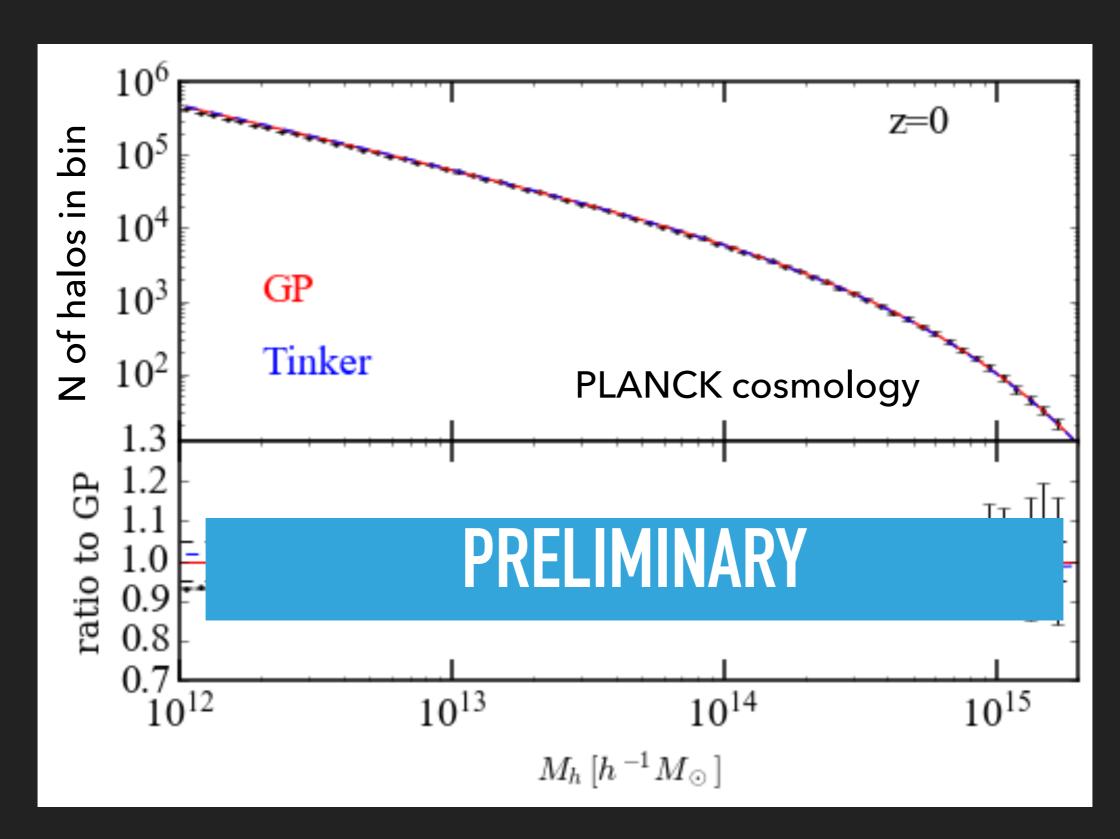
$$f(\sigma) = A[\sigma^{-a} + b] \exp\left[-\frac{c}{\sigma^2}\right]$$

- sim data is noisy at the high-mass tail
- resolution issue at low-mass → down weight
- Construct Gaussian Processes for A, a, and c for each z that interpolate in the 6D cosmological parameter space
- \blacktriangleright Convert mass to σ using classy
- For a given cosmology, z and M dependence is interpolated by spline

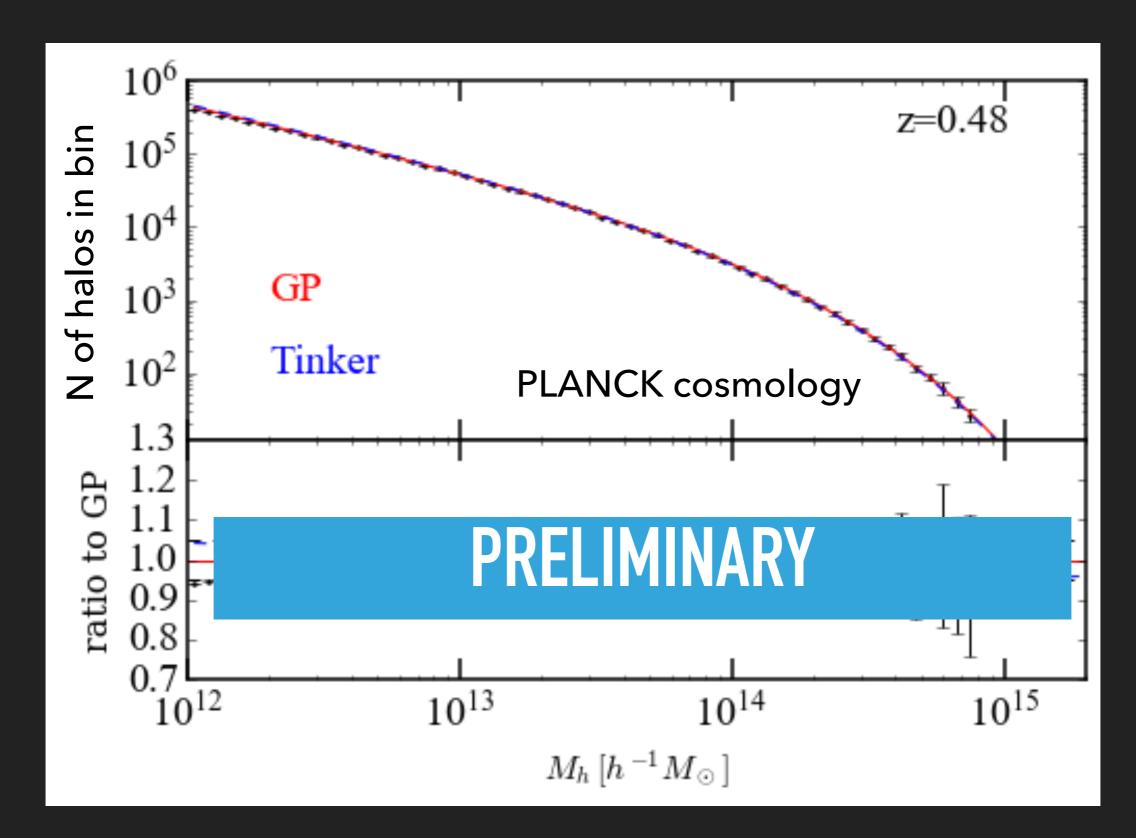
OUR HMF EMULATOR: HOW DOES IT WORK



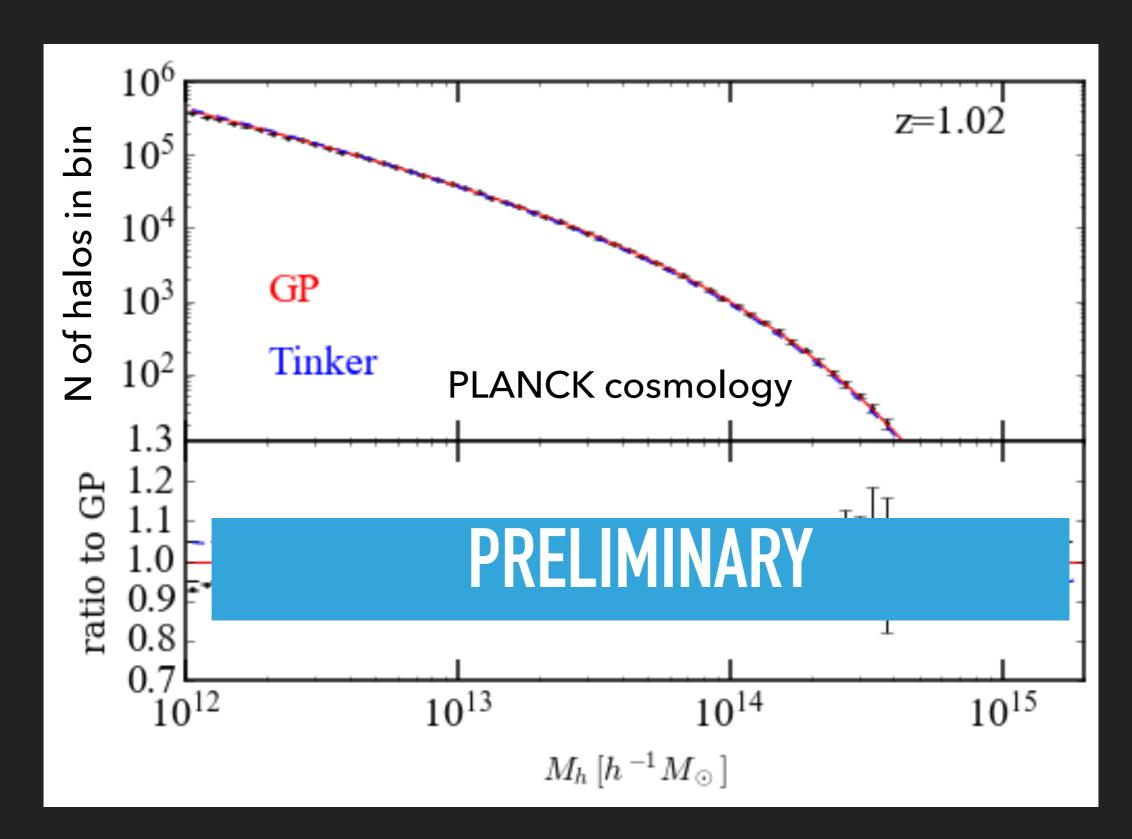
OUR HMF EMULATOR PERFORMANCE



OUR HMF EMULATOR PERFORMANCE



OUR HMF EMULATOR PERFORMANCE



OUR $\Delta \Sigma$ EMULATOR

- right construct mass limit samples and measure $\Delta\Sigma(R)$
- rightarrow at each (z, n_h) decompose $\Delta\Sigma(R)$ by PCA
 - use n_h, instead of M_min to have similar noise level
 - the first 10 PCs are sufficient
- Construct Gaussian Processes for each of the 10 PC coefficients for each (z, n_h) that interpolate in the 6D cosmological parameter space
- Prediction
 - ▶ GP evaluates the 10 PCs for every (z, n_h) for a given cosmology
 - Revert them to $\Delta\Sigma(R)$
 - Finally, (z, n_h, R) dependence is interpolated by 3D spline
- Use HMF GP to convert M_min to n_h

```
| Python 2 O | Pyt
```

Inputs:

- scale factor
- number density (or halo mass)
- projected distance

```
In [59]: z=0.25

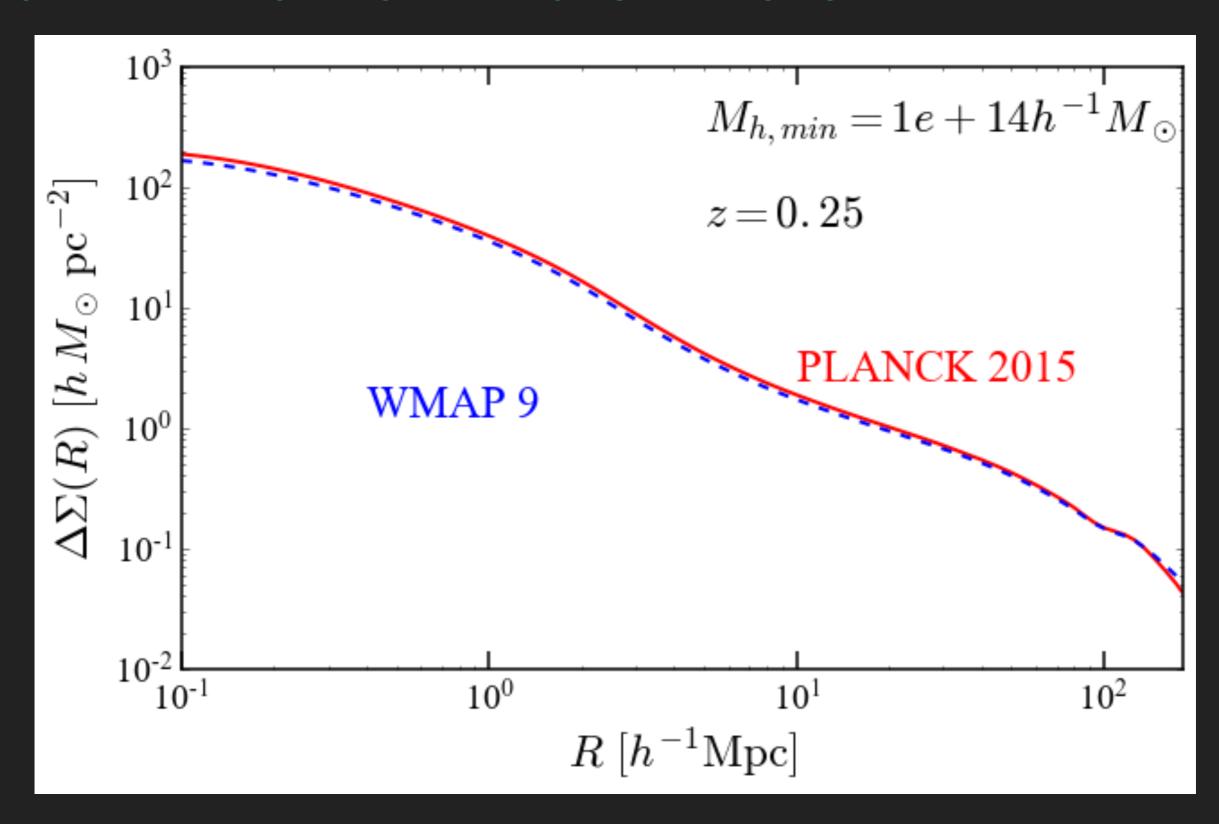
ascale = 1./(1+z)

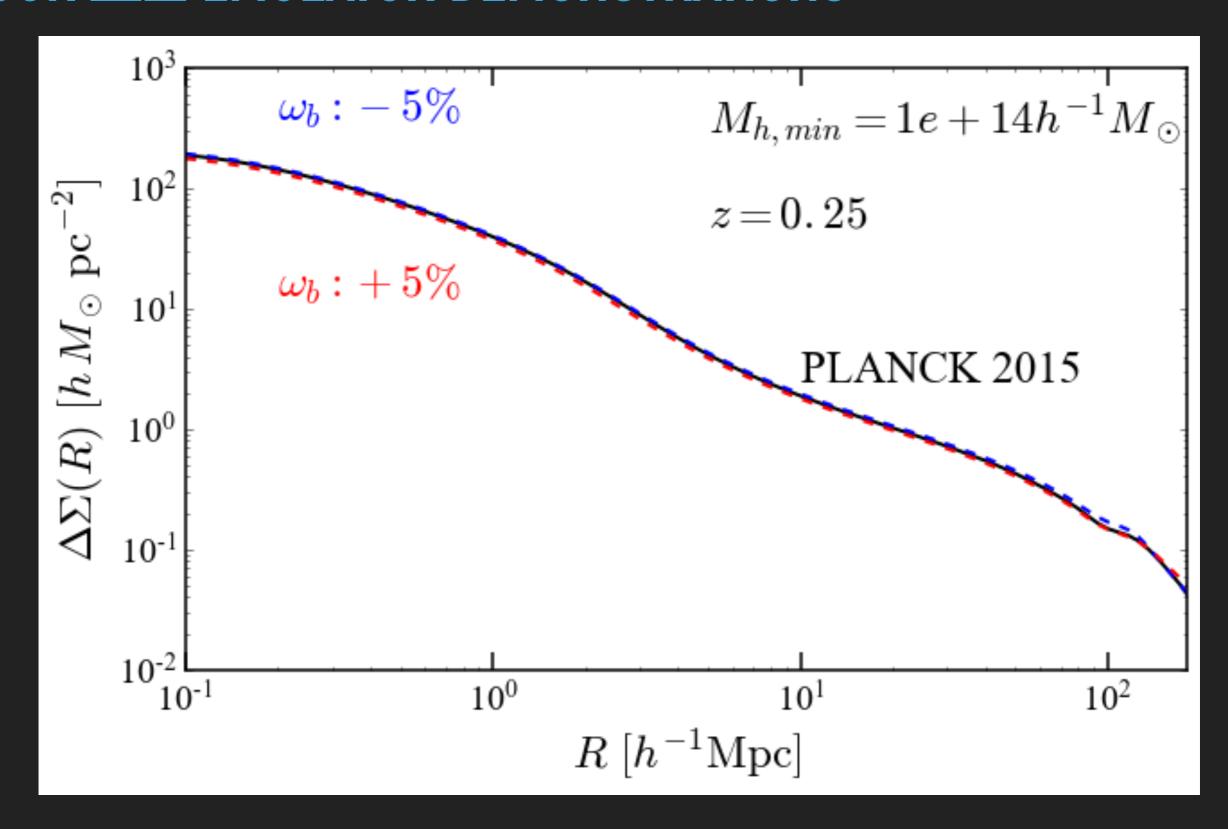
Rplot = np.logspace(-1,2.3,100) # in h^{-1}Mpc

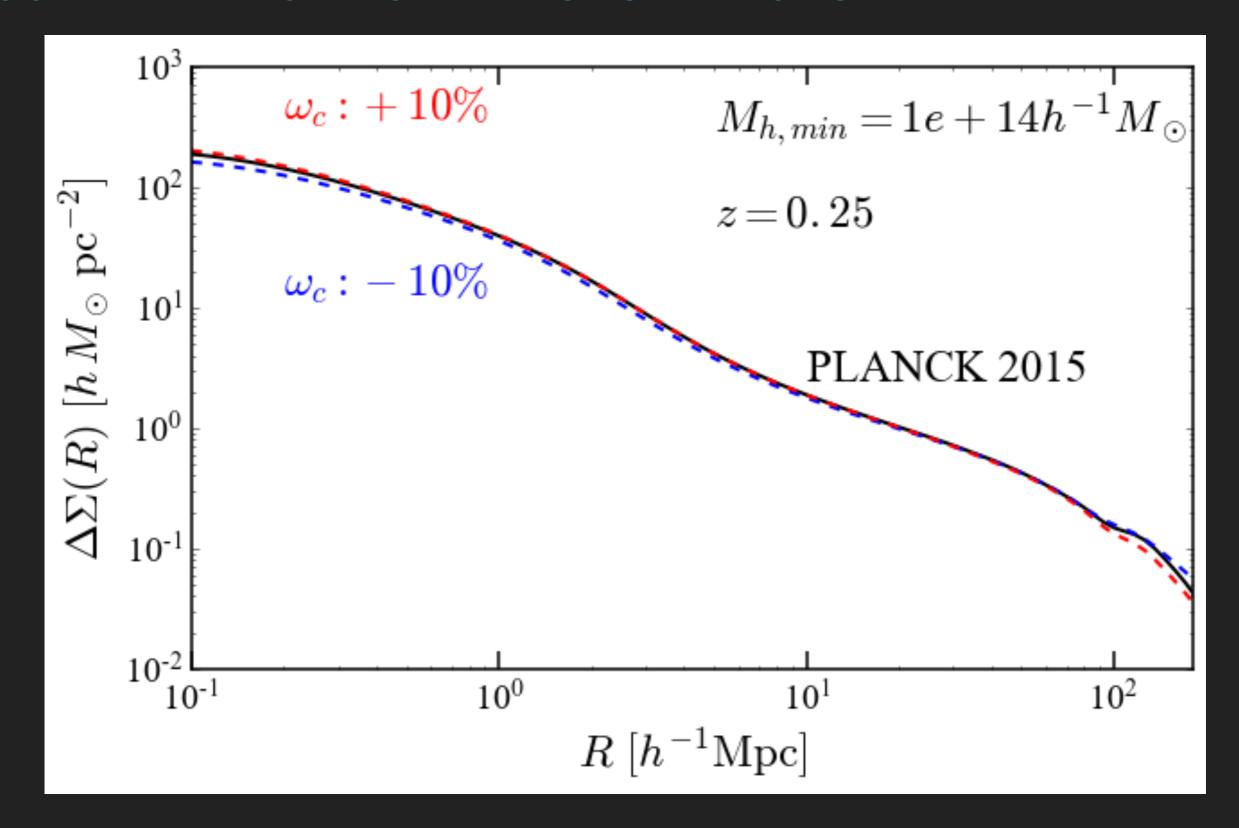
Mmin = 1e14 # in h^{-1}M_\odot
```

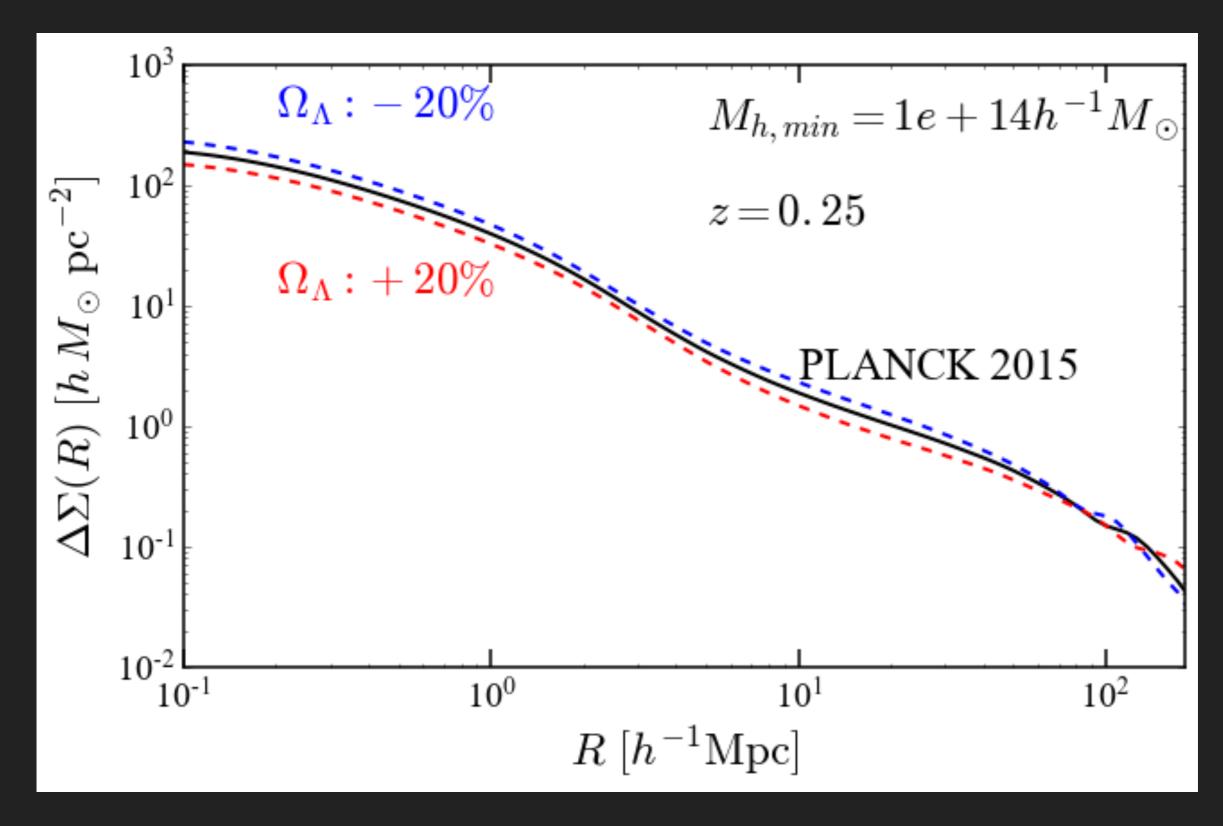
PLANCK 2015

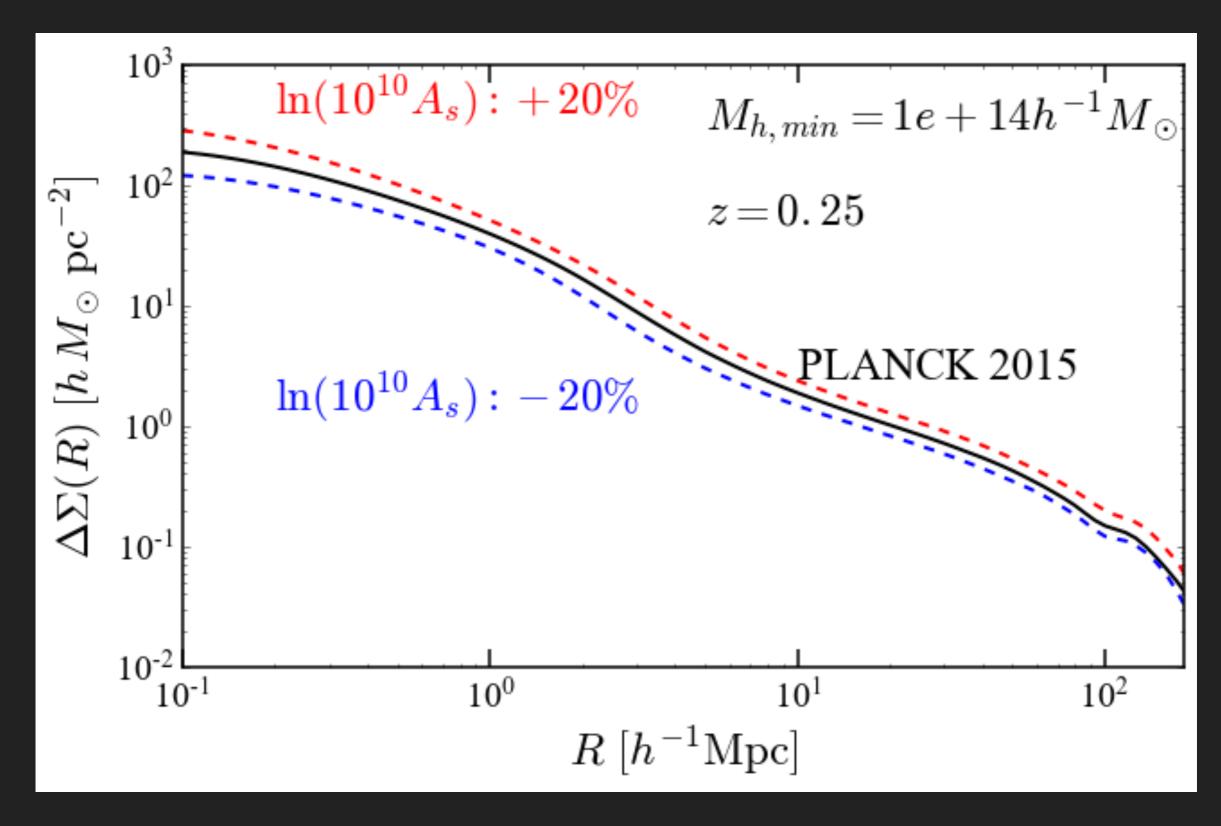
cparam = np.array([[0.02225,0.1198,0.6844,3.094,0.9645,-1]])
set_cosmo(cparam) give your cosmological params ~5s
set_redshift(z) and redshifts ~600ms; HMF GP called inside
lognh = mh_to_logdens(Mmin) convert M_min to n_h ~50µs
plt.loglog(Rplot,get_dsigma(ascale, lognh, Rplot),lw=2,color='red')

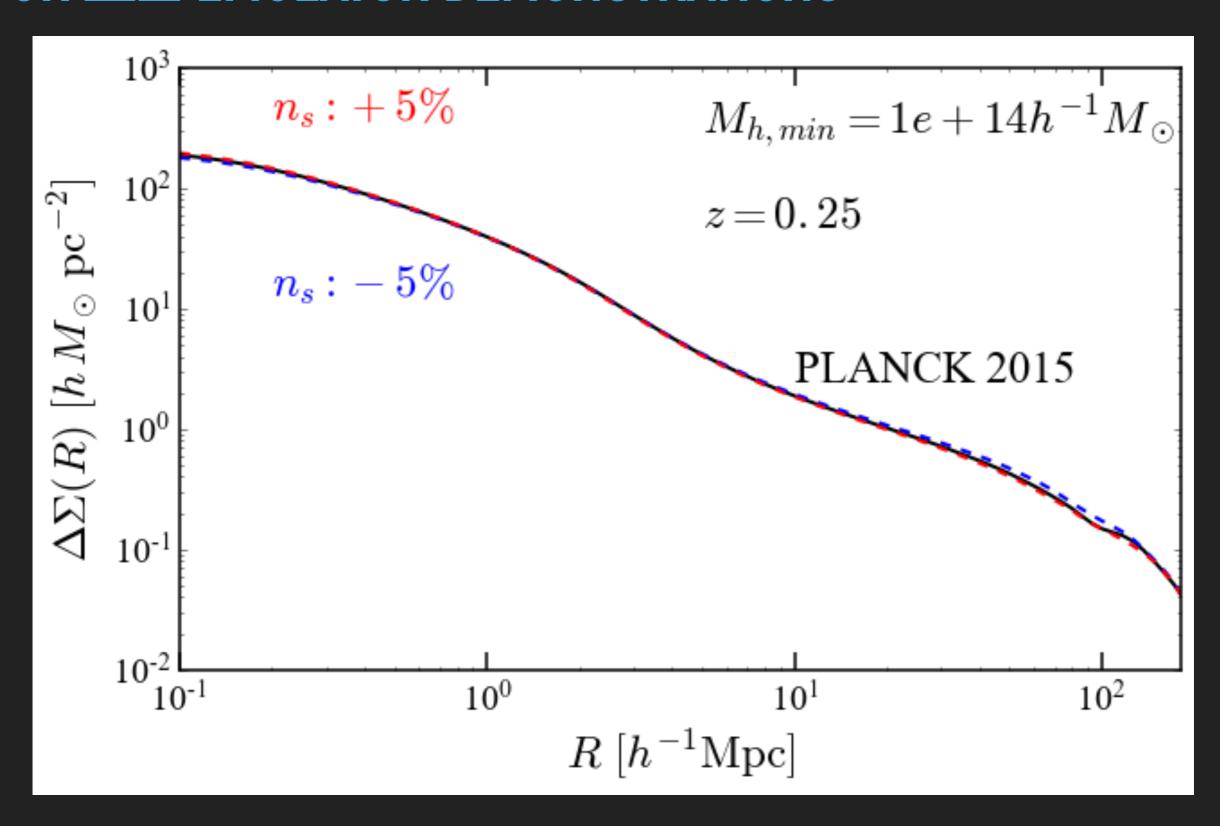


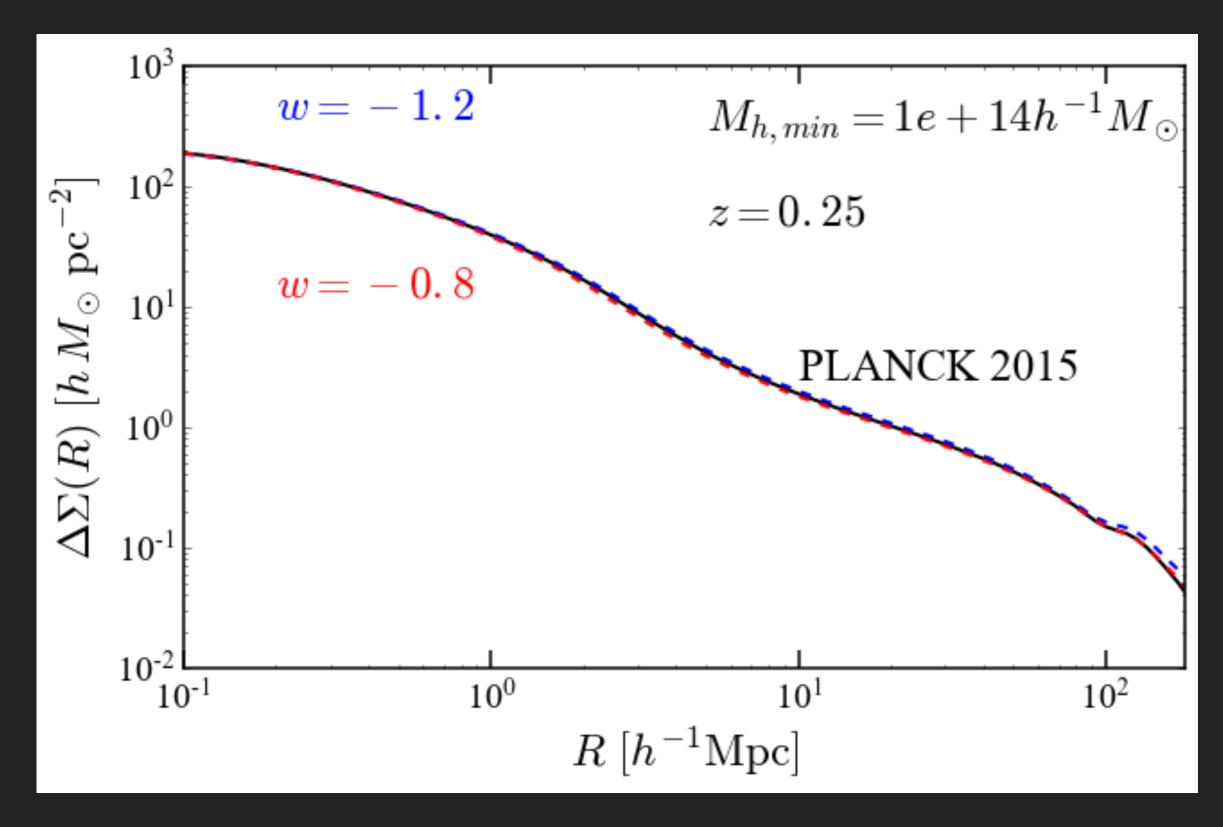


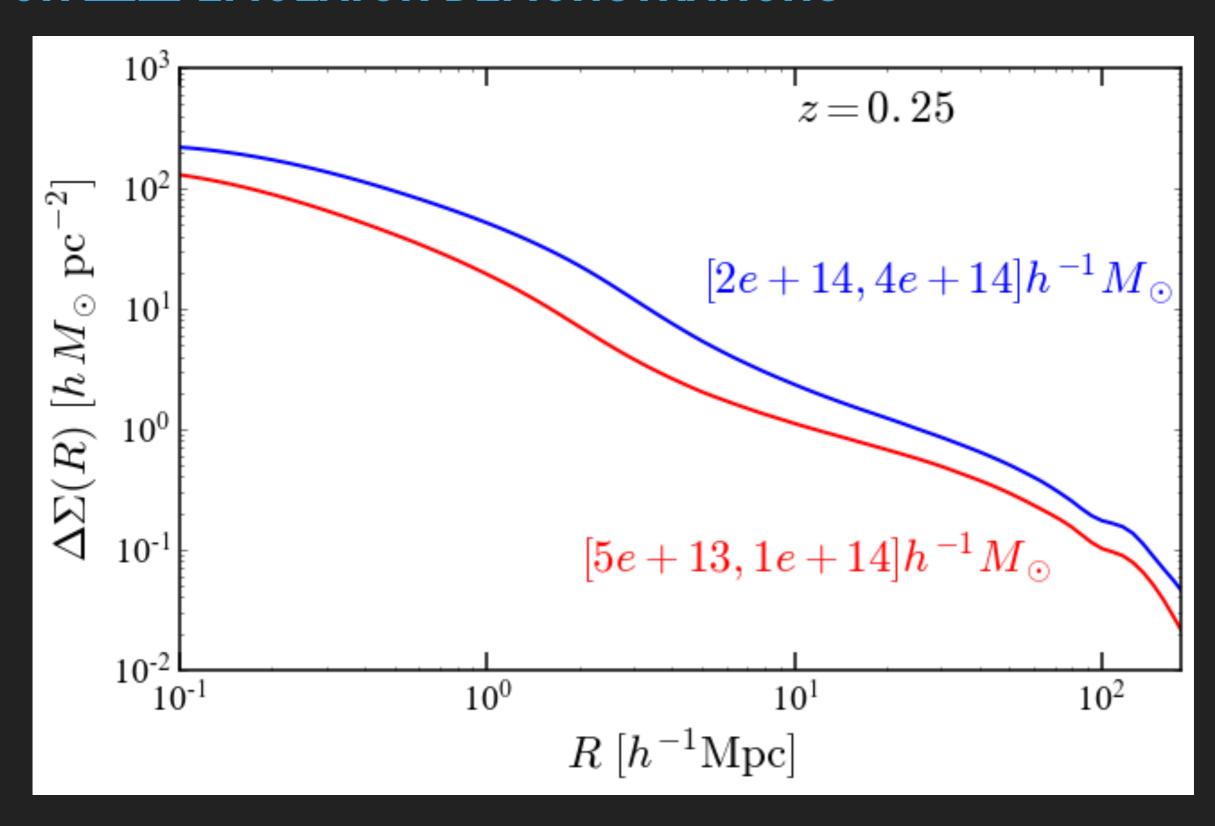








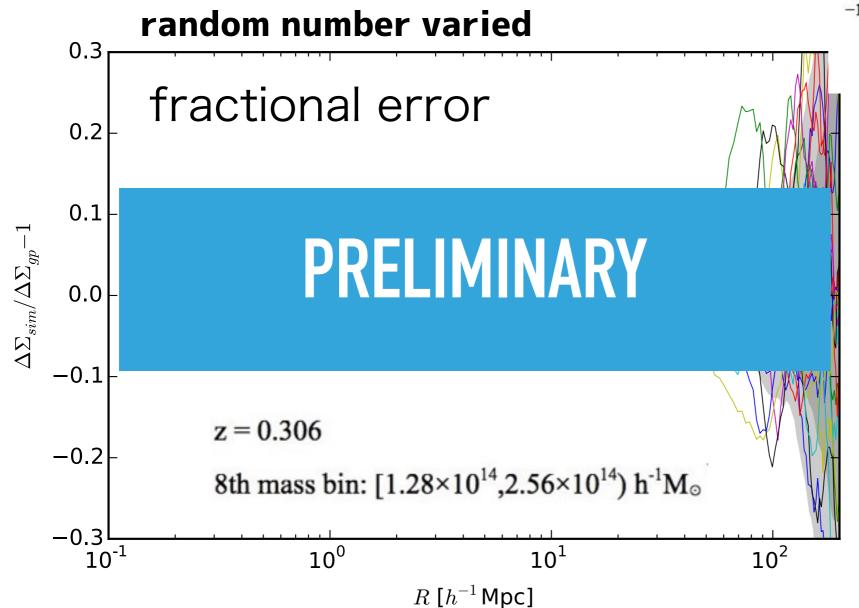


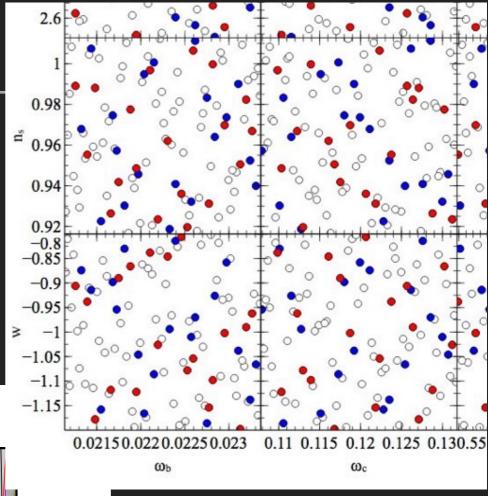


GAUSSIAN PROCESS ACCURACY

training with 20 models (red)

validation with 20 other models (blue)





SUMMARY

- Modeling the halo mass function and galaxy-galaxy lensing signal
 - Latin hypercube design + fitting/GP/spline
 - handy emulator in python almost ready
 - accuracy test undergoing, naively expect 5% accuracy
- To come
 - RSD emulator to combine g-g lensing and 3D clustering
 - further extension under discussion
 - e.g., non-flat, w0-wa cosmologies