Tomographic BAO analysis of BOSS DR12 combined sample

Yuting Wang
National Astronomical Observatories, China (NAOC)
KASI, Daejeon, Sep. 07, 2016

Gong-Bo Zhao, YW, et al BOSS collaboration, arXiv:1607.03153 YW, Gong-Bo Zhao, et al BOSS collaboration, arXiv:1607.03154

Part I

BAO as Dark Energy probe

Part II

Fits from CMASS/LOWZ

Part III

tomographic BAO analysis

Part IV

Concluding remarks

Part I

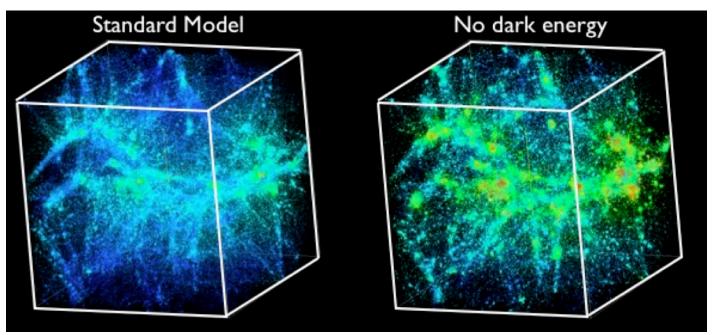
BAO as Dark Energy probe

Expansion of Universe is accelerating

$$\ddot{a} > 0$$

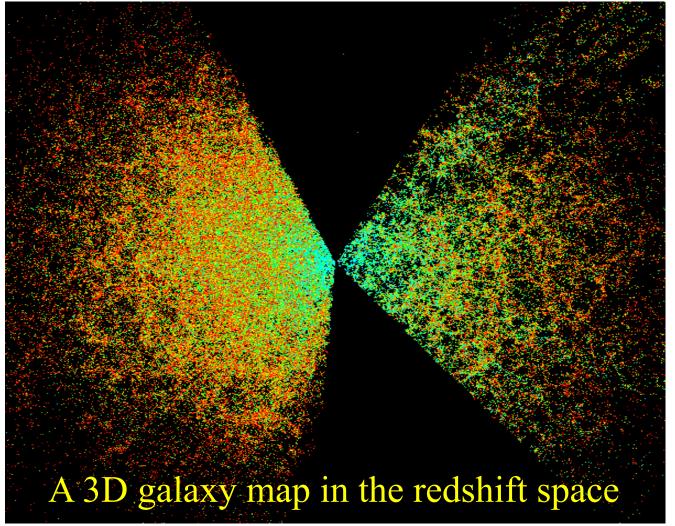
$$rac{H^2}{H_0^2}=\Omega_R a^{-4}+\Omega_M a^{-3}+\Omega_k a^{-2} +\Omega_\Lambda$$

Dark Energy dominates



Credit Katrin Heitmann

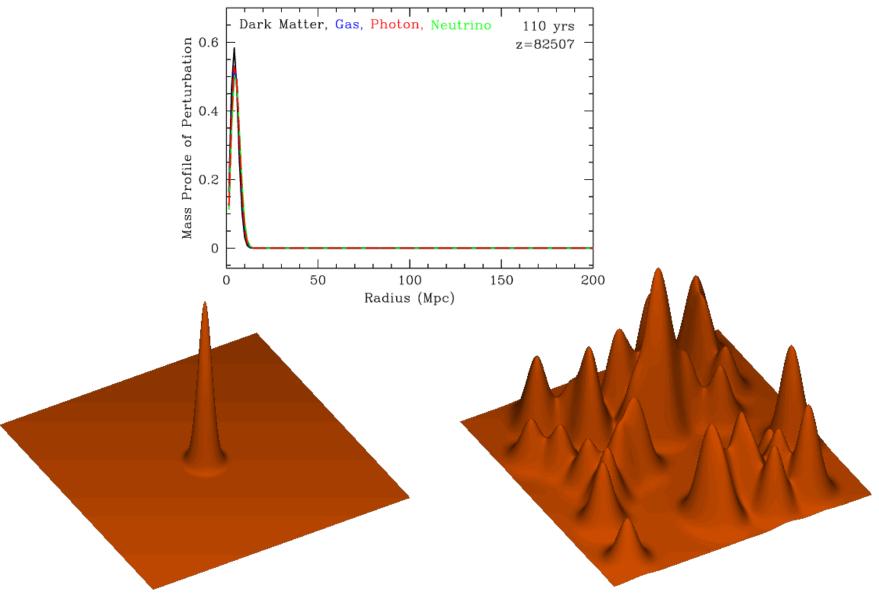
Past:2dFGRS, 6dFGRS, WiggleZ, SDSS III/BOSS



Credit SDSS team

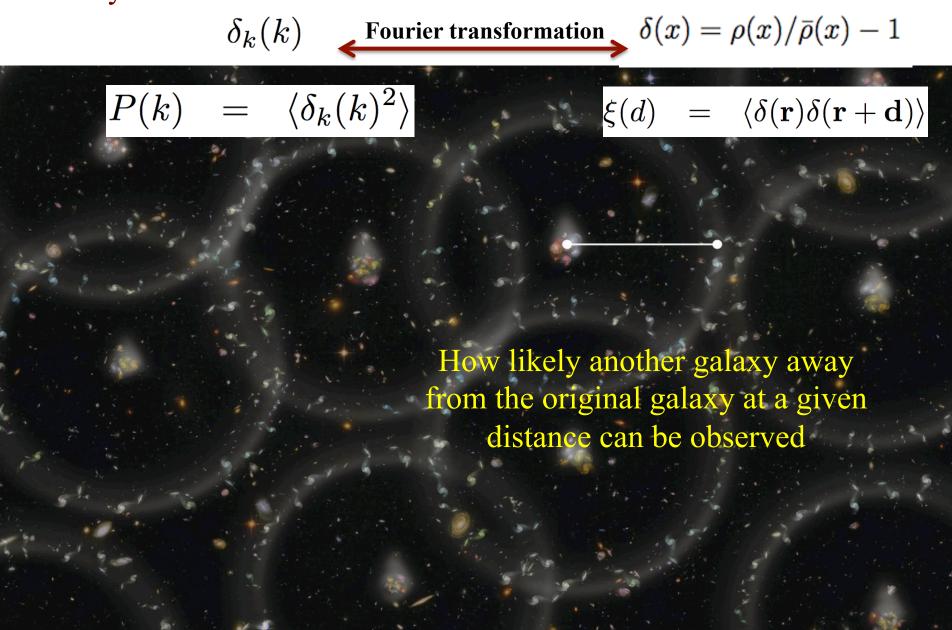
Ongoing: SDSS IV/eBOSS Future: DESI, PFS, Euclid

Baryon acoustic oscillations (BAOs)



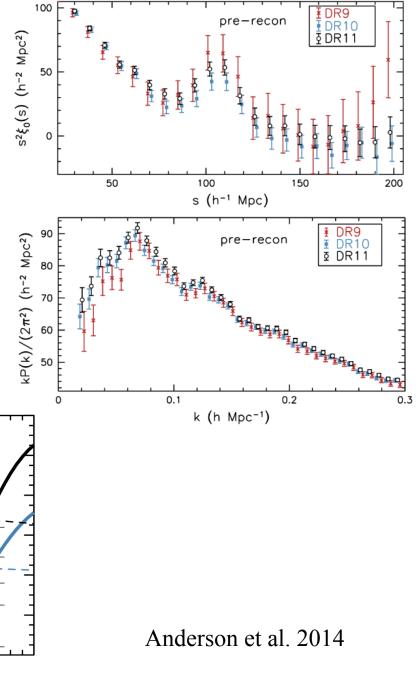
http://galaxies-cosmology-2015.wikidot.com/baryon-acoustic-oscillations

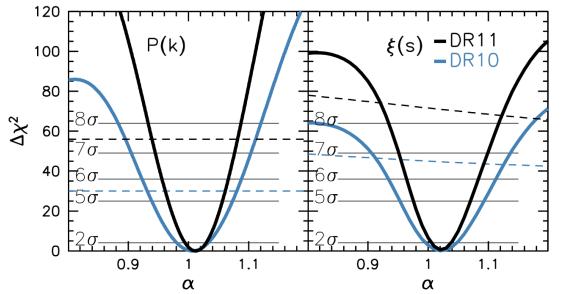
Density fluctuations:



BOSS DR11

The isotropic BAO signal is detected at a significance of $\sim 7\sigma$ in both correlation function and power spectrum





BAO scale, as a cosmic standard ruler, can be used to determine

cosmic expansion history

Anisotropic:

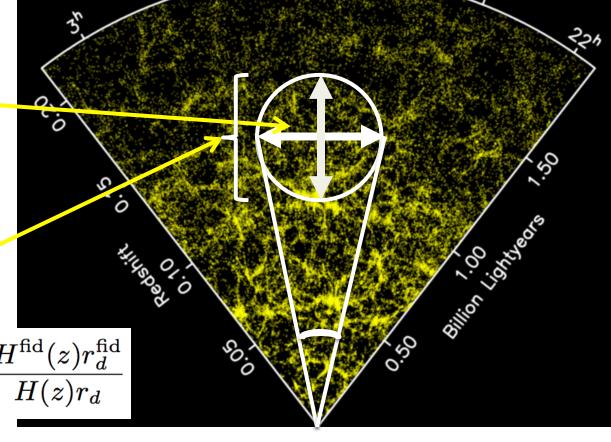
Transverse measurement

$$\Delta r_{\perp} = D_A \Delta \theta$$

Radial measurement

$$\Delta r_{||} = (c/H)\Delta z$$

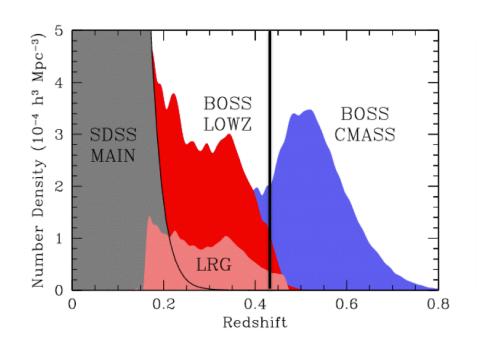
$$lpha_{\perp} = rac{D_A(z) r_d^{
m fid}}{D_A^{
m fid}(z) r_d} \,, \quad lpha_{\parallel} = rac{H^{
m fid}(z) r_d^{
m fid}}{H(z) r_d}$$



Isotropic:

$$D_V(z) \equiv \left[cz(1+z)^2 D_A(z)^2 H^{-1}(z) \right]^{1/3}$$

$$lpha \equiv rac{D_V(z)r_{d,\mathrm{fid}}}{D_V^{\mathrm{fid}}(z)r_d}$$



Part II

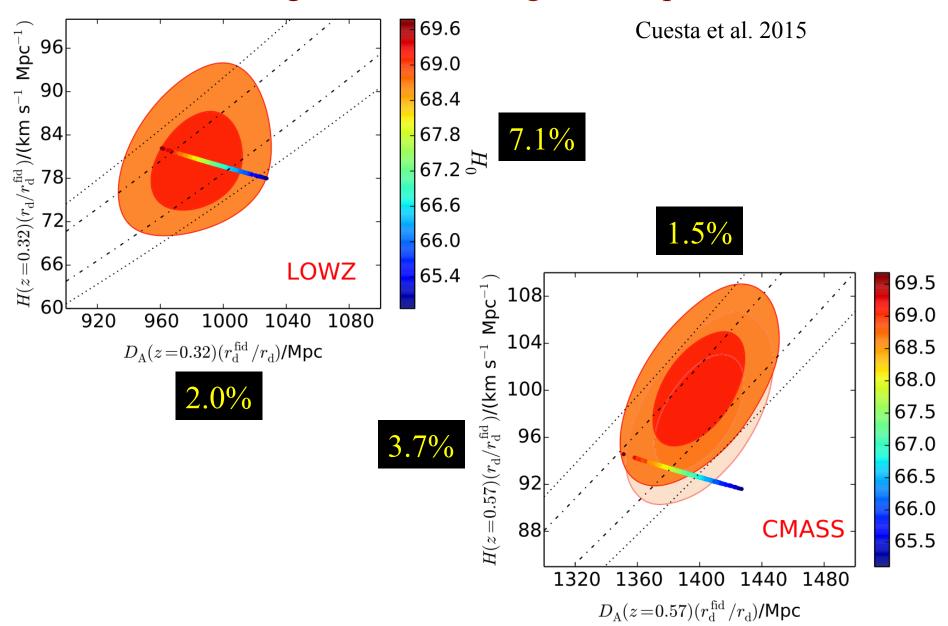
Fits from CMASS/LOWZ

	NGC	SGC	Total
LOWZ	248 237	113 525	361 762
CMASS	568 776	208 426	777 202
LOWZ+CMASS	817 013	321 951	1138 964

	NGC	SGC	Total
LOWZ DR11	5290.82	2050.60	7341.42
LOWZ DR12	5836.21	2501.26	8337.47
CMASS DR11	6307.94	2068.96	8376.90
CMASS DR12	6851.42	2524.67	9376.09

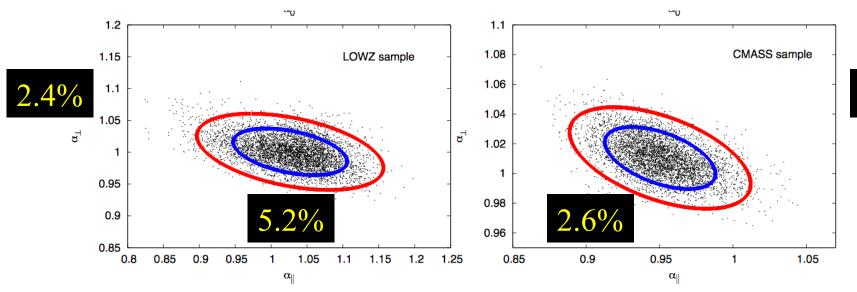
Cuesta et al. 2015

Fitting results in Configuration space



Fitting results in Fourier space

Hector et al. 2015

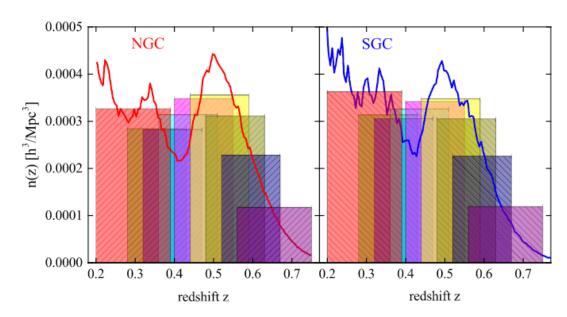


Sample	Statistic $H(z)r_s(z_d) \left[10^3 \mathrm{km} s^{-1}\right]$		$D_A(z)/r_s(z_d)$	r_{HD_A}	$D_V(z)/r_s(z_d)$
	Power Spectrum	11.60 ± 0.60	6.66 ± 0.16	0.41	8.62 ± 0.15
LOWZ	Correlation Function	11.65 ± 0.81	6.67 ± 0.14	0.29	8.59 ± 0.15
_	Consensus	11.63 ± 0.69	6.67 ± 0.15	0.35	8.61 ± 0.15
	Power Spectrum	14.56 ± 0.37	9.42 ± 0.13	0.47	13.70 ± 0.12
CMASS	Correlation Function	14.75 ± 0.50	9.52 ± 0.13	0.57	13.79 ± 0.14
	Consensus	14.67 ± 0.42	9.47 ± 0.12	0.52	13.74 ± 0.13

1.4%

An analysis of the "same"

DR12 sample not split into
LOWZ and CMASS, but
combined together



Part III

tomographic BAO analysis

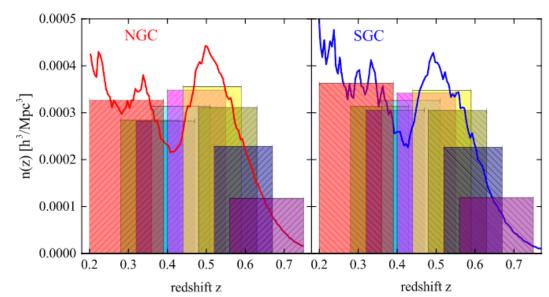
Goal: extracting redshift information as much as possible from the samples within 0.2<z<0.75

Method: splitting the whole redshift range into overlapping z bins

Binning scheme through Fisher forecast

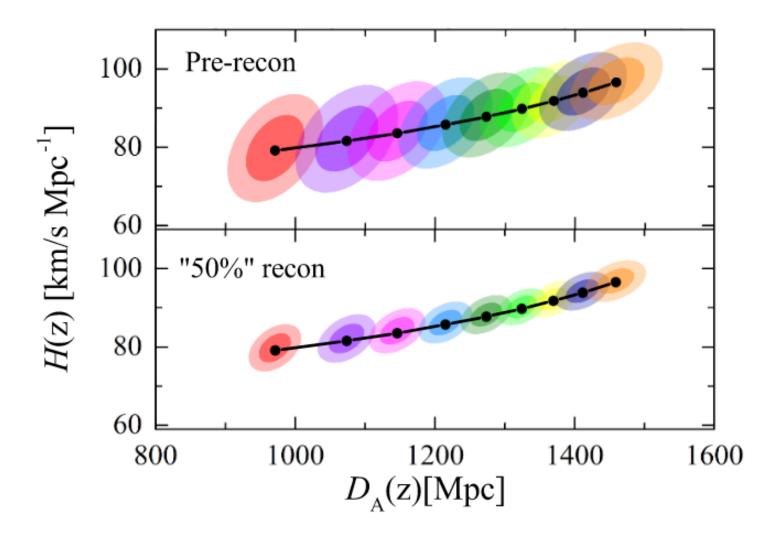
$$F_{ij} = \int_{\vec{k}_{\min}}^{\vec{k}_{\max}} \frac{\partial \ln P(\vec{k})}{\partial p_i} \frac{\partial \ln P(\vec{k})}{\partial p_j} V_{\text{eff}}(\vec{k}) \frac{d\vec{k}}{2(2\pi)^3}$$
$$\Delta \theta_i \ge (\mathbf{F}^{-1})_{ii}^{1/2}$$

Isotropic BAO measurement Precision <3%



z bins	$z_{ m eff}$	σ_{D_A}/D_A	σ_H/H	σ_{D_V}/D_V
0.20 < z < 0.39	0.31	0.0289 (159)	0.0705 (309)	0.0236 (114)
0.28 < z < 0.43	0.36	0.0281 (159)	0.0681 (307)	0.0229 (113)
0.32 < z < 0.47	0.40	0.0254 (145)	0.0616 (281)	0.0207 (104)
0.36 < z < 0.51	0.44	0.0226 (130)	0.0553 (253)	0.0185 (093)
0.40 < z < 0.55	0.48	0.0203 (118)	0.0502 (230)	0.0167 (085)
0.44 < z < 0.59	0.52	0.0188 (110)	0.0464 (214)	0.0155 (079)
0.48 < z < 0.63	0.56	0.0180 (108)	0.0441 (208)	0.0147 (077)
0.52 < z < 0.67	0.59	0.0183 (113)	0.0436 (214)	0.0147 (080)
0.56 < z < 0.75	0.64	0.0187 (122)	0.0418 (222)	0.0144 (085)

"50%" reconstructed efficiency



Better constraints on the distance parameters

The multipole power spectrum estimator (ie Yamamoto estimator):

$$\hat{P}_{\ell}^{\text{Yama}}(k) = \frac{(2\ell+1)}{I} \int \frac{d\Omega_{k}}{4\pi} \left[\int d\mathbf{r}_{1} F(\mathbf{r}_{1}) e^{i\mathbf{k}\cdot\mathbf{r}_{1}} \right]$$

$$\times \int d\mathbf{r}_{2} F(\mathbf{r}_{2}) e^{-i\mathbf{k}\cdot\mathbf{r}_{2}} \mathcal{L}_{\ell}(\hat{\mathbf{k}}\cdot\hat{\mathbf{r}}_{2}) - P_{\ell}^{\text{noise}}(\mathbf{k})$$

overdensity field
$$F(\mathbf{r}) = \frac{w(\mathbf{r})}{I^{1/2}}[n(\mathbf{r}) - \alpha n_s(\mathbf{r})]$$

Yamamoto et al 2006, Davide et al 2015

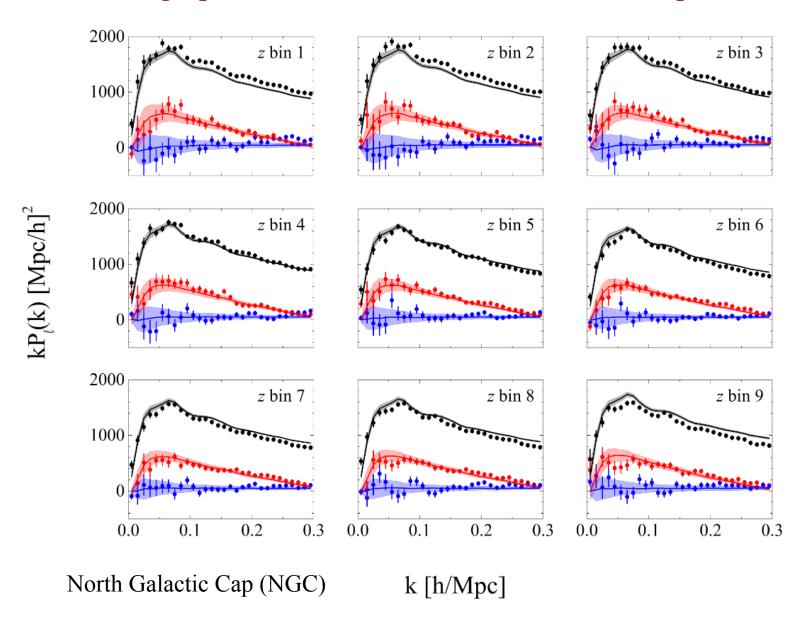
The correlation function estimator (ie Landy & Szalay estimator)

$$\xi(s,\mu) = \frac{DD(s,\mu) - 2DR(s,\mu) + RR(s,\mu)}{RR(s,\mu)}$$

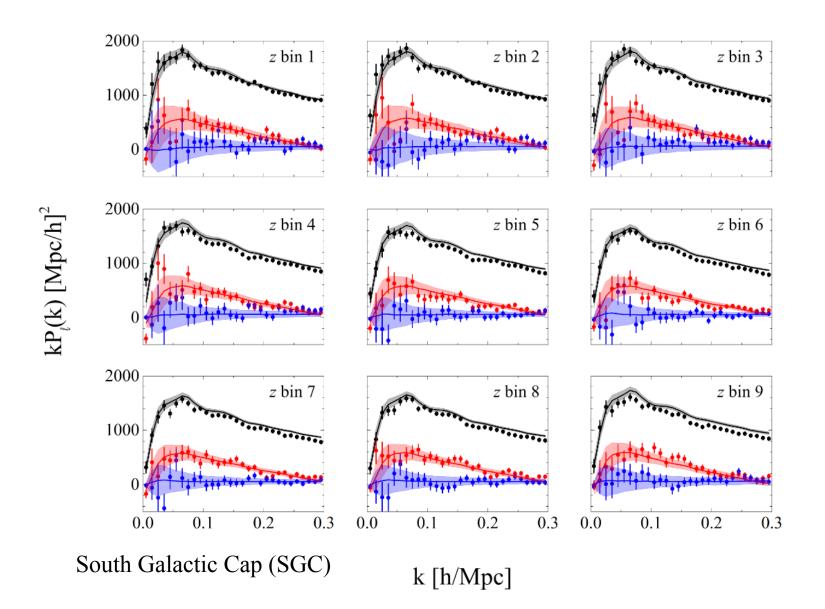
$$\xi_l(s) = rac{2l+1}{2} \int_{-1}^1 \mathrm{d}\mu \, \xi(s,\mu) \mathcal{L}_\ell(\mu),$$

Landy & Szalay 1993

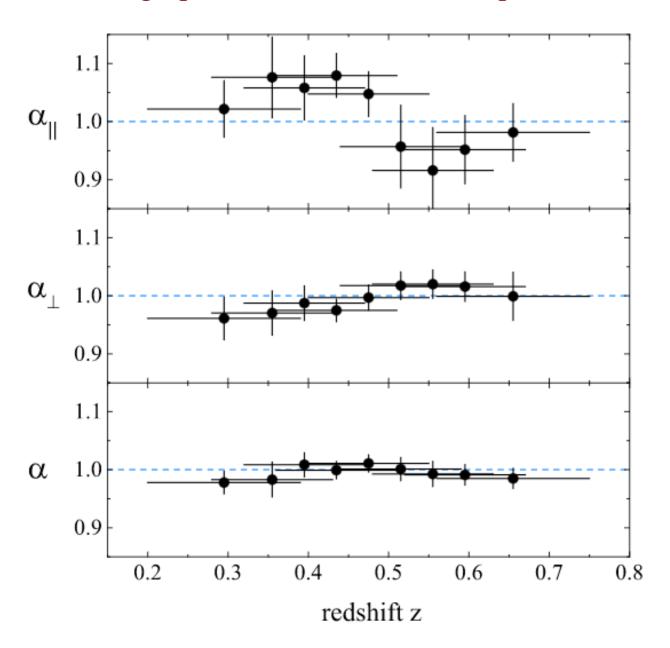
Tomographic BAO measurements in Fourier space



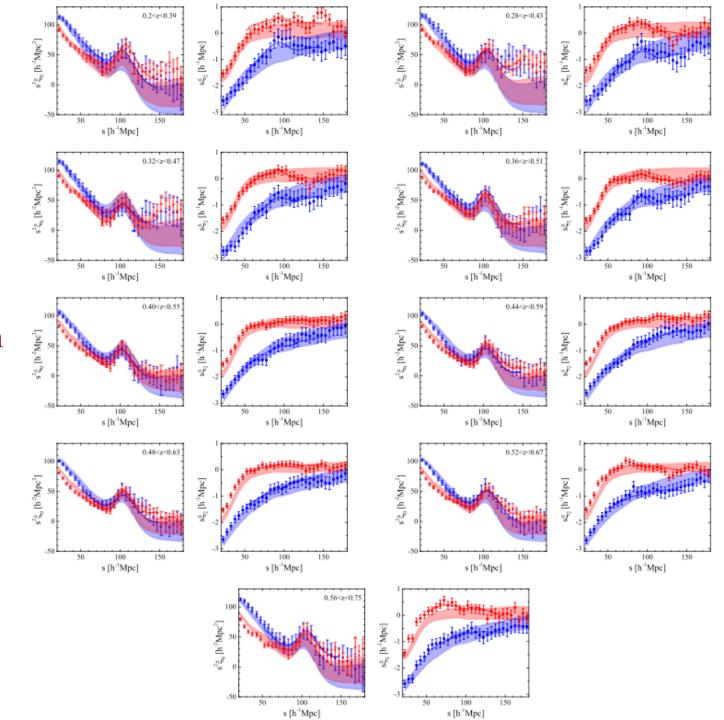
Tomographic BAO measurements in Fourier space



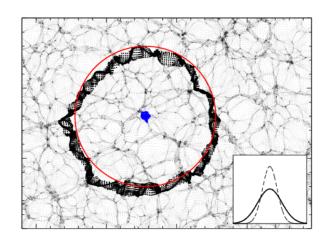
Tomographic best fits in Fourier space



Tomographic BAO measurements in Configuration space



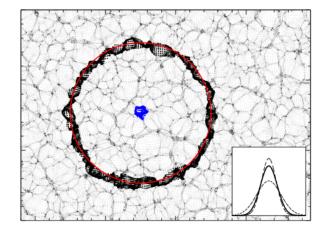
Reconstruction sharpens the BAO feature in the correlation function



Basic procedure

Observed redshift-space density field

Estimate redshift-space displacement field



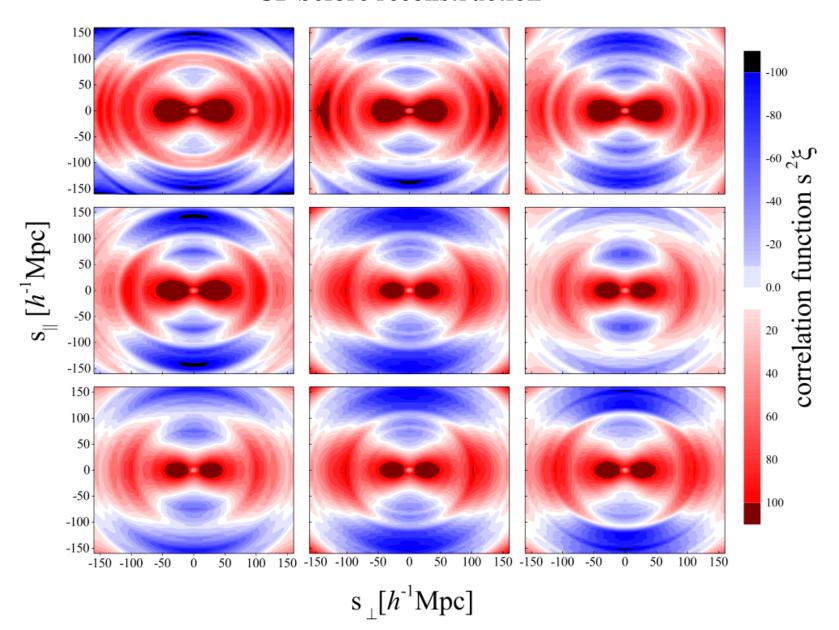
Derive displacement field in configuration space

displace the observed galaxies back to their original positions

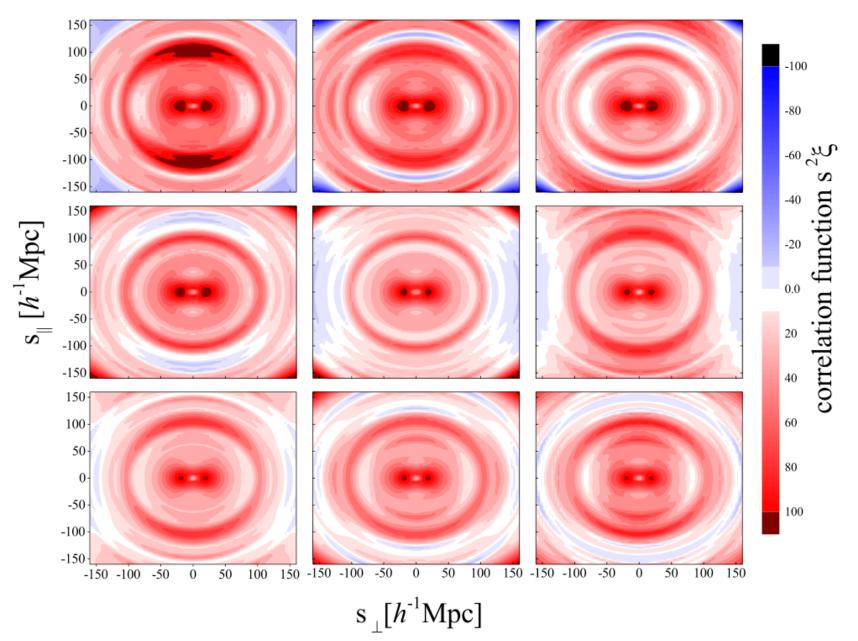
Reconstructed field

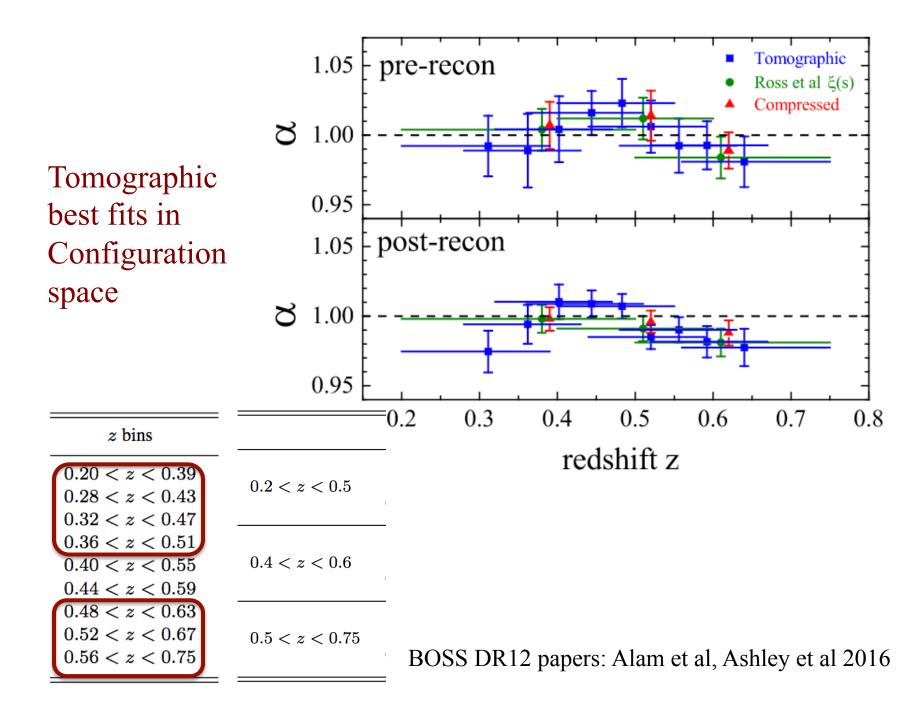
Nikhil et al 2012

CF before reconstruction

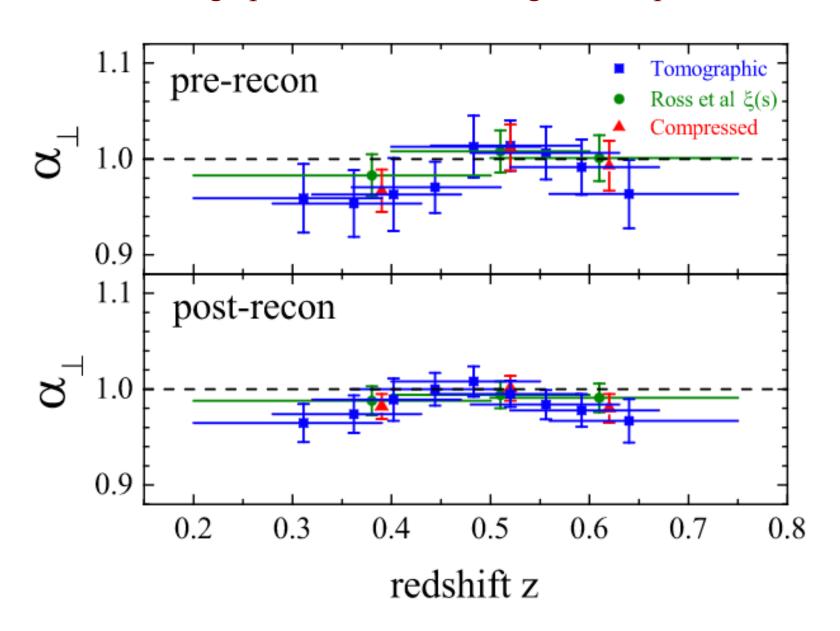


CF after reconstruction

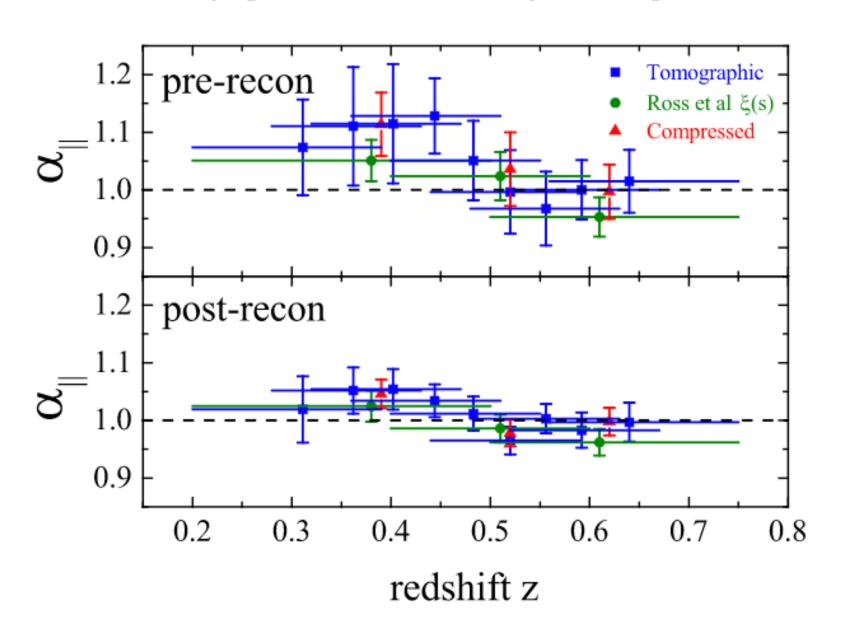




Tomographic best fits in Configuration space



Tomographic best fits in Configuration space



Combination of the binned measurements

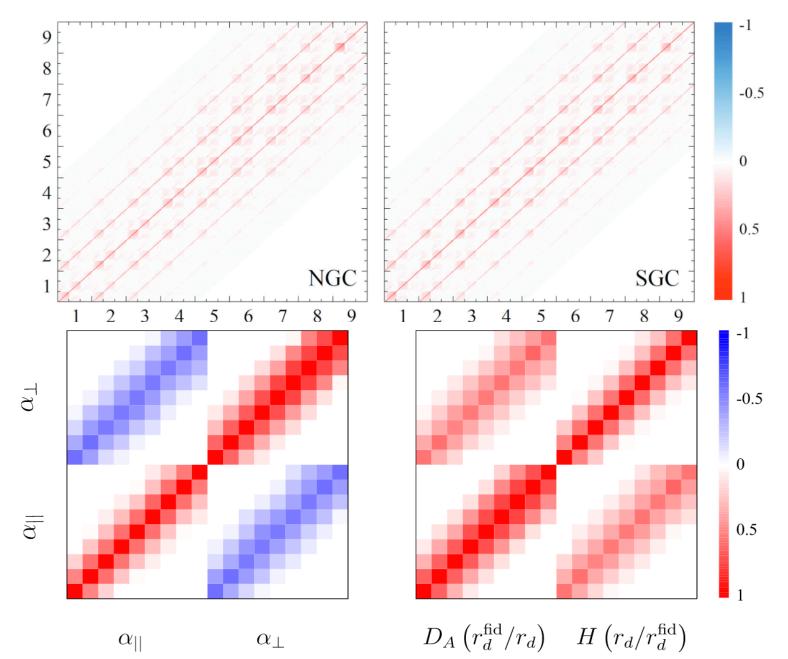
Method 1: Calculate the covariance between the measured like Pk across all the redshift bins

$$C_{ij,mn}^{\ell,\ell'} = \frac{1}{N_{\text{mock}} - 1} \sum_{q=1}^{N_{\text{mock}}} \left[P_{\ell}^{q}(k_{i}, z_{m}) - \bar{P}_{\ell}(k_{i}, z_{m}) \right] \times \left[P_{\ell'}^{q}(k_{j}, z_{n}) - \bar{P}_{\ell'}(k_{j}, z_{n}) \right], \tag{12}$$

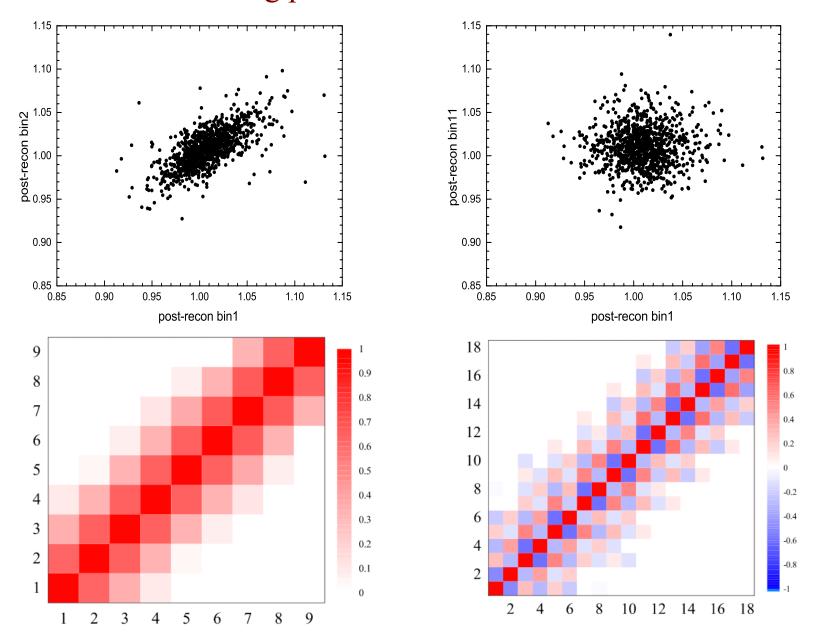
Method 2: Calculate the correlation using best fit parameters in each redshift bin

$$C_{ij} \equiv \langle lpha_i lpha_j
angle - \langle lpha_i
angle \langle lpha_{\underline{j}}
angle$$

Full correlation matrix of Pk between different redshift slices

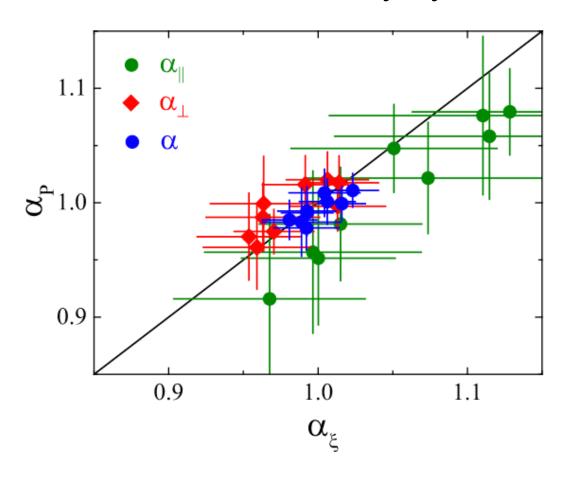


Correlation of fitting parameters between different redshift slices

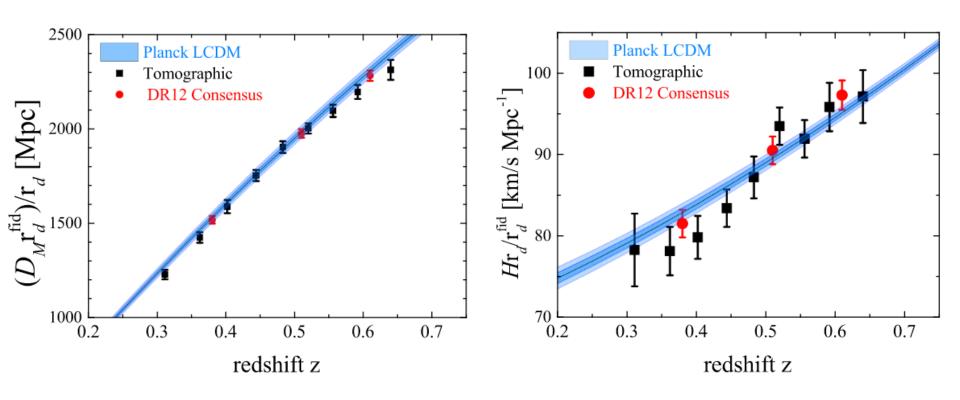


Result Comparisons

Pre-recon results P0+P2+P4 vs ξ0+ξ2



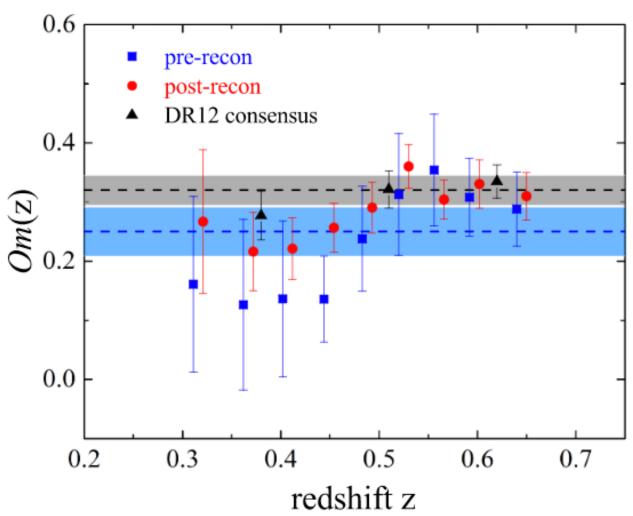
Result Comparisons



DR12 consensus from Adam et al 2016

Constraints on cosmological models

Om diagnostic
$$Om(z) \equiv \frac{[H(z)/H_0]^2 - 1}{(1+z)^3 - 1}$$



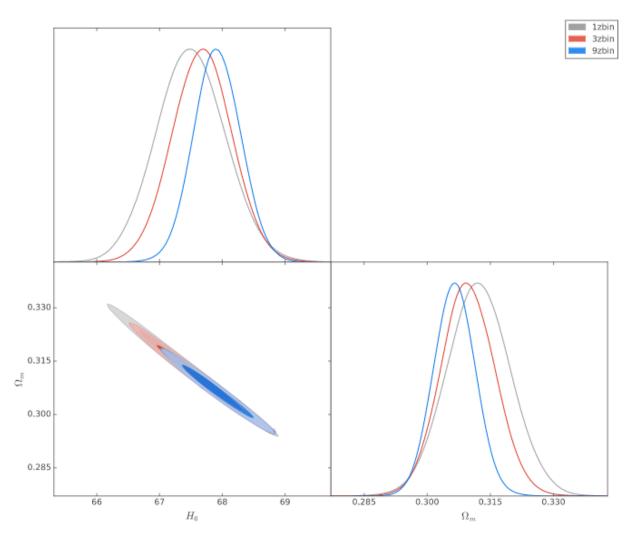
Flat LCDM model

Model	Joint Data set Planck+JLA+BOSS	Ω_m	H_0	
Λ CDM	Tomographic (9 zbin)	0.3065 ± 0.0049	67.92 ± 0.38	
Λ CDM	DR12 Consensus (3 zbin)	0.3098 ± 0.0065	67.68 ± 0.48	
ΛCDM	Compressed (1 zbin)	0.3122 ± 0.0076	67.50 ± 0.56	

Adam et al 2016

Cosmological Model	Data Sets	$\Omega_{ m m} h^2$	$\Omega_{ m m}$	H ₀ km/s/Mpc
ΛCDM	Planck	0.1429 (14)	0.317(9)	67.2 (7)
Λ CDM	Planck + BAO	0.1418(10)	0.309(6)	67.7(5)
Λ CDM	Planck + BAO + FS	0.1419(10)	0.311(6)	67.6(5)
ΛCDM	Planck + BAO + FS + SN	0.1419(10)	0.310(6)	67.6(5)

Flat LCDM model



9 zbin vs 1 zbin, 9 zbin vs 3 zbin: the errors are obviously improved

Flat CPL DE model

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

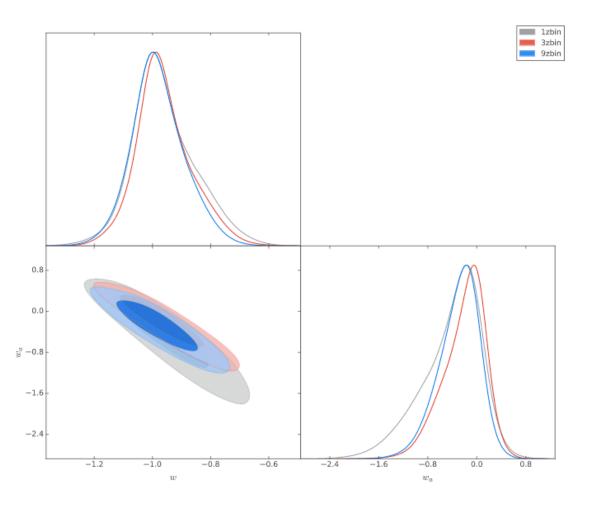
Model	Joint Data set Planck+JLA+BOSS	$\Omega_{m{m}}$	H_0	w_0	w_a
$w_0w_a{ m CDM}$	Tomographic (9 zbin)	0.3031 ± 0.0090	68.69 ± 1.01	-0.9795 ± 0.0926	-0.2897 ± 0.3352
$w_0w_a{ m CDM}$	DR12 Consensus (3 zbin)	0.3102 ± 0.0098	67.80 ± 1.02	-0.9417 ± 0.1010	-0.2877 ± 0.3587
$w_0w_a{ m CDM}$	Compressed (1 zbins)	0.3024 ± 0.0115	68.83 ± 1.28	-0.9609 ± 0.1096	-0.4006 ± 0.4856

Adam et al 2016

Cosmological Model	Data Sets	$\Omega_{ m m} h^2$	$\Omega_{ m m}$	H ₀ km/s/Mpc	$\Omega_{ m K}$	w_0	w_a
w_0w_a CDM	Planck + SN	0.1428 (14)	0.294 (16)	69.8 (18)		-0.85(13)	-0.99(63)
$w_0w_a{ m CDM}$	Planck + BAO	0.1427(11)	0.336(21)	65.2(21)		-0.63(20)	-1.16(55)
$w_0w_a{ m CDM}$	Planck + BAO + FS	0.1427(11)	0.334(18)	65.5(17)		-0.68(18)	-0.98(53)
$w_0w_a{ m CDM}$	Planck + BAO + FS + SN	0.1426(11)	0.313 (9)	67.5 (10)		-0.91 (10)	-0.39(34)

Flat CPL DE model

$$w(z) = w_0 + w_a \frac{z}{1+z}$$



9 zbin vs 1 zbin: FoM is improved by a factor of 1.35

9 zbin vs 3 zbin: the errors are slightly improved

In order to extract the redshift information of galaxy clustering, we split the whole redshift range of BOSS combined sample.

Based on the galaxy redshift survey, we got the high redshift-resolution measurements on the cosmic expansion history.

We also test the constraining power of our tomographic measurements. The constraint precisions of cosmological parameters are improved, compared with that from a single BAO measurement.

Improvements on extracting rich tomographic information in redshifts are expected in the next few years.

Thanks!

Part IV

Concluding remarks