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Why GR in LSS?

Planned galaxy surveys: DESI, HETDEX, LSST, Euclid, WFIRST...

Larger and larger volumes, eventually accessing the scales
comparable to the horizon: beyond Newtonian gravity, fully general
relativistic approach (or any modification) is necessary
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WhyΛCDM in non-linear regime?

Λ (or any kind of DE) was negligible at very early times

Λ becomes significant at later stage when non-linearities in
cosmic structure are developed

Λ affects the evolution of gravitational instability, so its effects
emerge more prominently at non-linear level

Λ is the simplest form of DE, so first to study

No explicit analytic NL study is available yet!

What are the effects ofΛ in non-linear regime of LSS?
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Newtonian theory

3 basic equations for density perturbation δ≡ δρ/ρ̄, peculiar
velocity v and gravitational potentialΦwith a pressureless fluid

δ̇+ 1

a
∇·v =−1

a
∇· (δv) continuity eq

v̇+Hv+ 1

a
∇Φ=−1

a
(v ·∇)v Euler eq

∆

a2Φ= 4πGρ̄δ Poisson eq

Newtonian system is closed at 2nd order

δ̈+2Hδ̇−4πGρ̄δ=− 1

a2

d

dt
[a∇· (δv)]+ 1

a2 ∇· (v ·∇v)

−→ at linear order, δ+ ∝ a (growing) and δ− ∝ a−3/2 (decaying)

(Bernardeau et al. 2002)
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Basic GR non-linear equations

Based on the ADM metric

ds2 =−N2(dx0)2 +γij

(
N idx0 +dxi

)(
N jdx0 +dxj

)
the fully non-linear equations are (Bardeen 1980)
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−
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+
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j −8πGS
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E,0

N
− E,iN i

N
−K

(
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)
−K

i
jS

j
i +

(
N2J i

)
;i

N2
= 0

Ji,0

N
−

Ji;jN j

N
−

JjN j
;i

N
−KJi +

EN,i

N
+Sj

i;j +
Sj

iN,j

N
= 0

Fluid quantities: E ≡ nµnνTµν, Ji ≡−nµTµi, Sij ≡ Tij
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Einstein-de Sitter universe

Usually, structure formation is described in EdS

Tµν = ρmuµuν −→ Ji = Sij = 0

Linear growth factor is all: D1 = a, D2 = D2
1 and so on

Comoving gauge (γ= 0 and T 0
i = 0) gives identical equations

to the Newtonian counterparts up to 2nd order

N = 1 w/o gauge freedom: coordinate time = proper time

Pure GR contribution appears from 3rd order and is totally
sub-dominant (Jeong, JG, Noh & Hwang 2011, Biern, JG & Jeong 2014)

In e.g. synchronous gauge (g00 =−1 and g0i = 0) we can have
another Newtonian correspondence (Hwang, Noh, Jeong, JG & Biern 2015)

Linear power spectrum is obtained by solving the Boltzmann eq
(e.g. CAMB) and is used iteratively to obtain non-linear contributions

Relativistic non-linear perturbation in aΛCDM universe Jinn-Ouk Gong



Introduction Formulation of perturbation theory Relativistic theory withΛ Comparison with known results Conclusions

Battle plan

Combining continuity & energy constraint eqs

H δ′+ 3

2
H 2Ωmδ= a2

4

(
R−K

ij
K ij + 2

3
κ2 +4HN iδ,i +4Hδκ

)

1 Growing solution δ= H
∫

dtH −2(RHS)
2 Split RHS as RHS = RHS(1) +RHS(2) +RHS(3) +·· · with

RHS(n)(t,x) ≡∑
I

RHS(n)
I (t,x) =∑

I
X (n)

mI (x)TmI (t)

[n: n-th order, I : t-dep, m(≤ n): growth factor ∝ Dm
1 in EdS]

3 With δ= δ(1) +δ(2) +δ(3) +·· · each analytic solution is given by

δ(n) =∑
I
δ(n)

mI (t,x) =∑
I

DmI (t)X (n)
mI (x) with DmI (t) = H

∫
dt

TmI

H 2
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Linear order solution

At linear order

RHS(1) =−∆ϕ(1)(x) ≡ X (1)
1 (x) and T1(t) = 1

Thus we recover the well-known linear solution, with ϕ(1) ≡R

δ(1)
1 (t,x) = D1(t)X (1)

1 (x) with D1(t) ≡ H
∫

dt

H 2

we can further define f1 ≡ d logD1

d loga
and Σ1 ≡ 1+ 3

2

Ωm

f1
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Second order solutions

Likewise at 2nd order

RHS(2) ∼
(

constant,
1

H 2f1Σ1
,

1

H 2Σ2
1

,
1

H 2f1Σ
2
1

)
Thus other than D1 (coming from const RHS) 3 new growth factors

D2A = 7

5

∫
dtD2

1f1Σ1 , D2B = 7

2
H

∫
dtD2

1f 2
1 , D3C = 7

2
H

∫
dtD2

1f1

Not all D2I ’s are indep but D2A +D2C = 2D2
1, so we can write the pure

Newtonian 2nd order solution explicitly

δ(2)(t,x) = δ(2)
1 +

C∑
I=A

δ(2)
2I︸ ︷︷ ︸

≡δ(2)
2

= D1X (2)
1 +

C∑
I=A

D2I X (2)
2I with

δ(2)
2 = 5D2A +D2B +4D2C

10

[
5

7

(
R,i∆R

)
,i

]
+ 5D2A −D2B

4

[
∆

7

(
R,iR,i

)]
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3rd order solutions (1/2)

At 3rd order, RHS has various time dependences: e.g. ϕ(3) reads

ϕ(3) ∼ (
constant,D1,D2

1,D2I
)

Accordingly we have components proportional to D1 and D2I :

δ(3) ⊃ δ(3)
1︸︷︷︸

∝D1

+ δ(3)
2A︸︷︷︸

∝D2A

+ δ(3)
2B︸︷︷︸

∝D2B

+ δ(3)
2C︸︷︷︸

∝D2C
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3rd order solutions (2/2)

And new growth factors that all scale as D3
1 in EdS:

D3D = 9

5
H

∫
dtD3

1f1Σ1 with X (3)
3D = too long! (1)

D3E = 9

2
H

∫
dtD3

1f1 with X (3)
3E = too long! (2)

D3F = 9

2
H

∫
dtD3

1f 2
1 with X (3)

3F = too long! (3)

and those coming from δ(2)
2I that also scale as D3

1 in EdS:

D3I = 9

5
H

∫
dtD1f1Σ1D2I with X (3)

3I =− 5

18

[(
R,ij∆−1∂j +∆R∆−1∂i

)
X (2)

2I

]
,i

D3I ′ =
9

4
H

∫
dtD1D2I f2I with X (3)

3I ′ =−4

9

(
∆R∆−1X (2),i

2I

)
,i

D3I ′′ =
9

2
H

∫
dtD1f1D2I with X (3)

3I ′′ =−2

9

(
X (2)

2I R,i
)

,i

D3I ′′′ =
9

4
H

∫
dtD1f1D2I f2I with X (3)

3I ′′′ =
2

9

(
R,ij∆−1∂i∂j −∆R

)
X (2)

2I
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Previous GR solutions

1-loop power/bi-spectrum of δ (Jeong et al. 2011, Biern et al. 2014)

1 Initial condition at t = ti is set by δ rather than ϕ

2 Linear initial condition: δ(ti) = δ(1)
1 (ti)

XXXXXXXXXXXt-dep
pert order

1st 2nd 3rd

∼ D1 in EdS δ(1)
1 δ(2)

1 δ(3)
1

∼ D2
1 in EdS δ(2)

2 δ(3)
2

∼ D3
1 in EdS δ(3)

3

δ(t,x) = c(x)

H 2 +·· · with

out

assuming

non-

linear energy constraint

c(x) =−2

5
∆R

+ 2

5

[
3

2
R,iR,i +4R∆R−3R

(
3R,iR,i +4R∆R

)]
+·· ·
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Previous GR solutions

1-loop power/bi-spectrum of δ (Jeong et al. 2011, Biern et al. 2014)

1 Initial condition at t = ti is set by δ rather than ϕ

2 Linear initial condition: δ(ti) = δ(1)
1 (ti)

XXXXXXXXXXXt-dep
pert order

1st 2nd 3rd

∼ D1 in EdS δ(1)
1 δ(2)

1 δ(3)
1

∼ D2
1 in EdS δ(2)

2 δ(3)
2

∼ D3
1 in EdS δ(3)

3

δ(t,x) = c(x)

H 2 +·· · without assuming non-linear energy constraint

c(x) =−2

5
∆R+ 2

5

[
3

2
R,iR,i +4R∆R−3R

(
3R,iR,i +4R∆R

)]
+·· ·

Relativistic non-linear perturbation in aΛCDM universe Jinn-Ouk Gong



Introduction Formulation of perturbation theory Relativistic theory withΛ Comparison with known results Conclusions

Previous Newtonian solutions

Upon identifying δ→ δN and

−κ→ 1

a
∇·vN ≡ θN

energy conservation and trace ADM equations become identitcal to
the Newtonian continuity and Euler equations

δN (t,k) =
∞∑

n=1
Dn(t)δ(n)(k)

θN (t,k)

Hf1
=

∞∑
n=1

Dn(t)θ(n)(k)

with the initial condition δN (ti,k) = δ(1)
1 (ti,k) ≡ δ̂(k) [D1(ti) = 1]
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Conclusions

As galaxy surveys become deeper and deeper, fully GR
description is relevant

With a non-zero cosmological constantΛ:
Proper-time hypersurface provides Newtonian intuition
Perturbative analytic solutions can be obtained
Initial non-linearity in δ in terms of R

Directly connected to inflation
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