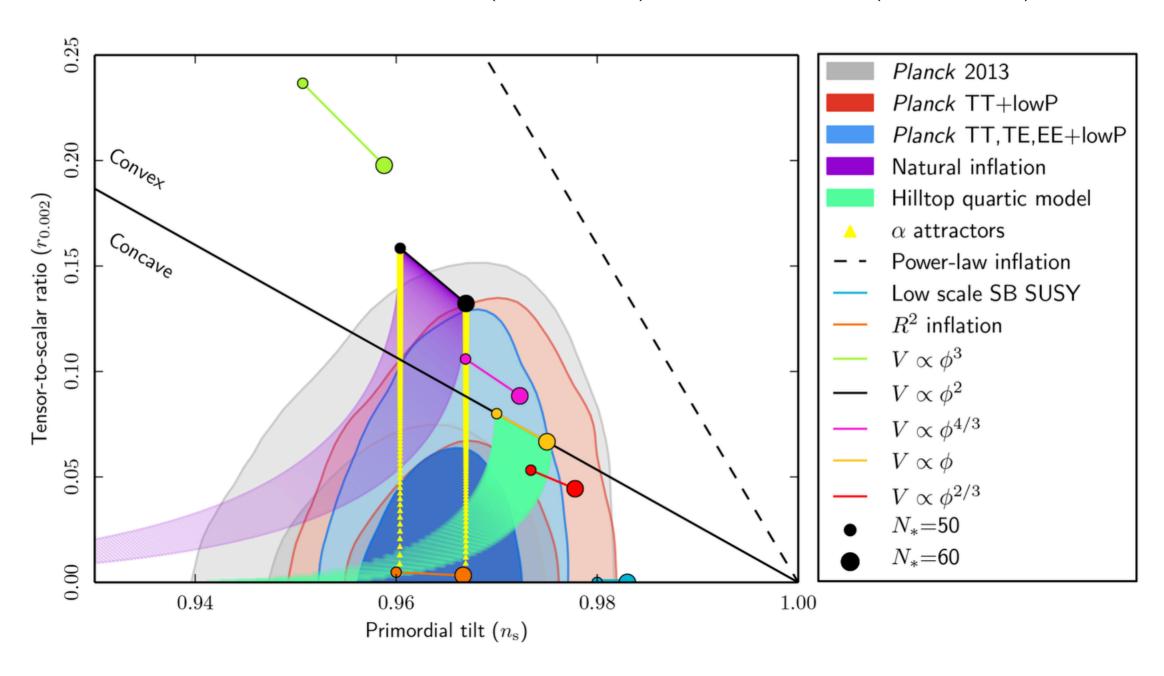
Revisiting CDM isocurvature perturbations in curvaton scenario

Naoya Kitajima

NK, D. Langlois, T. Takahashi, S. Yokoyama in prep

Single field inflation models are tightly constrained

 $n_s = 0.968 \pm 0.006 \quad (68\% \text{ CL}), \quad r < 0.12 \quad (95\% \text{ CL})$

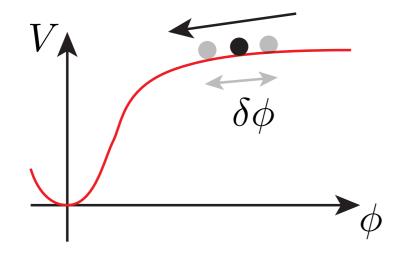


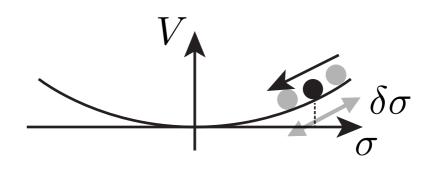
Small field model or R² model seem good..

(One of) the next-to-simplest setup(s)

inflaton + extra scalar field

"Curvaton" : σ





Enqvist & Sloth / Lyth & Wands / Moroi & Takahashi (2001)

- light & subdominant during inflation

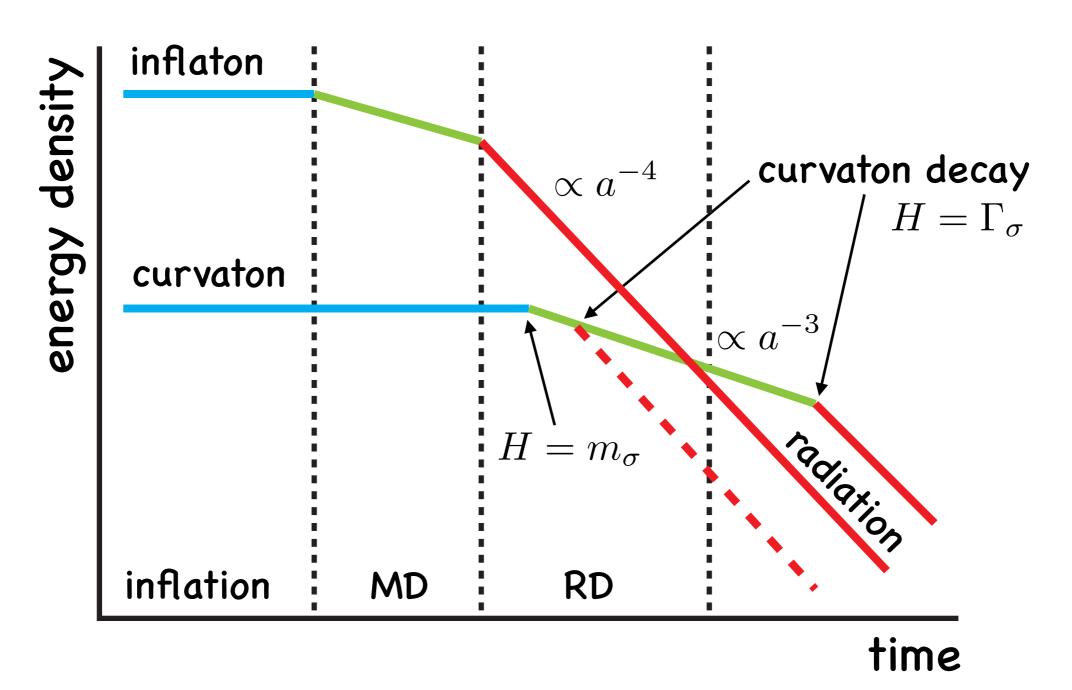
$$m_{\sigma} \ll H_{\rm inf}, \ \rho_{\sigma} \ll \rho_{\phi}$$

=> acquires quantum fluctuations

multiple origin for perturbations

- decays after inflation

Cosmic history in curvaton scenario



- Large non-gaussianity
- Isocurvature perturbations

- Non-gaussianity

$$\zeta = \zeta_G + \frac{3}{5} f_{\rm NL} (\zeta_G^2 - \langle \zeta_G^2 \rangle)$$

$$f_{
m NL}^{
m (local)}=0.8\pm5.0$$
 (68%CL, Planck Collaboration 2015)

Curvaton model:
$$f_{\rm NL}=rac{5}{4r_s}-rac{5}{3}-rac{5r_s}{6}$$
 $r_s=rac{3\Omega_{\sigma,{
m dec}}}{3\Omega_{\sigma,{
m dec}}+4\Omega_{r,{
m dec}}}$

$$\Omega_{\sigma, \text{dec}} = r_s = 1 \implies f_{\text{NL}} = -\frac{5}{4}$$

$$\Omega_{\sigma, \text{dec}} \sim r_s \ll 1 \implies f_{\text{NL}} \simeq \frac{5}{4r_s} \gg 1$$

$$r_s \gtrsim 0.2$$

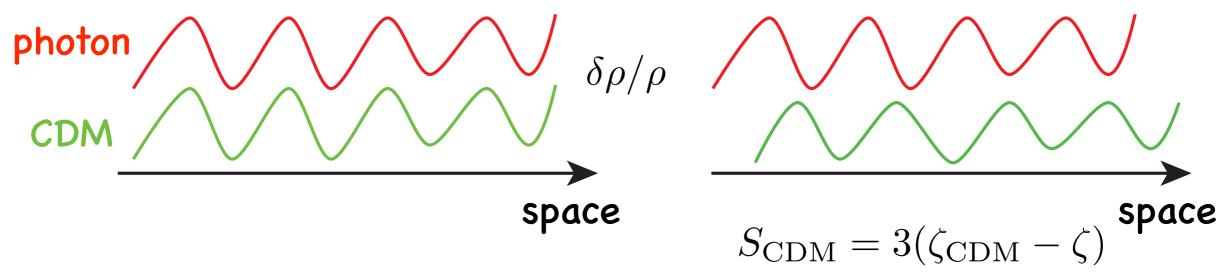
! severely constrained

Curvaton should dominate the universe before decay in order not to give too large f_{NL}

- Isocurvature perturbations

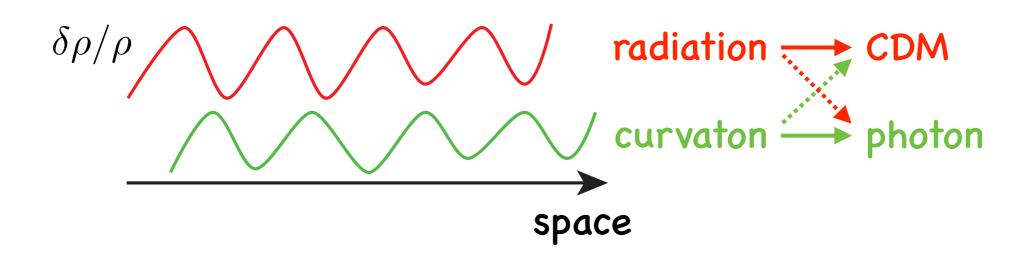
adiabatic perturbation

isocurvature perturbation



"intrinsic" such as axion

Curvaton has "Residual" CDM isocurvature perturbation



Constraint on isocurvature perturbations

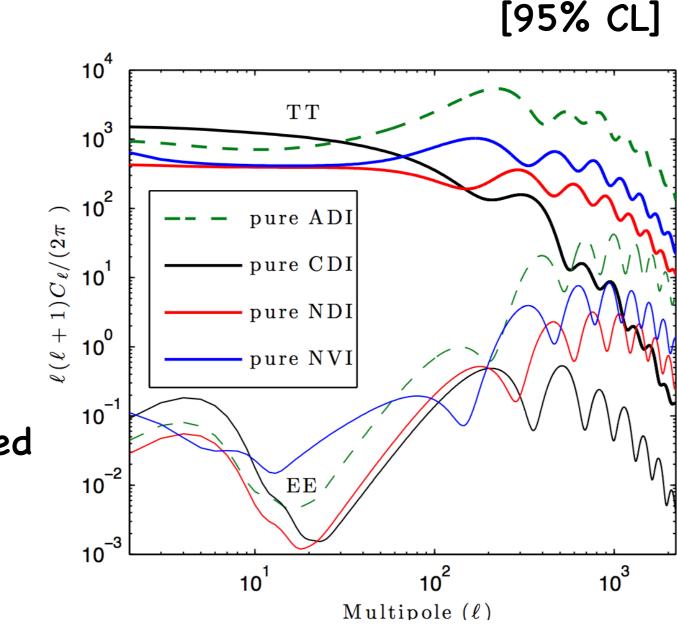
Planck 2015 constraint:

 $\beta_{\rm iso}(k_0) < 0.035$ (uncorrelated), $\beta_{\rm iso}(k_0) < 0.013$ (correlated)

$$\beta_{\rm iso} = \frac{\mathcal{P}_S}{\mathcal{P}_\zeta + \mathcal{P}_S}$$

$$|S/\zeta| \lesssim 0.1$$

curvaton model is constrained



Planck collaboration 1502.02114

CDM isocurvature perturbation in curvaton scenario

I. WIMP dark matter

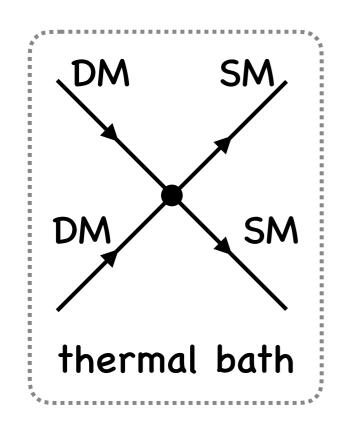
Weakly Interacting Massive Particle

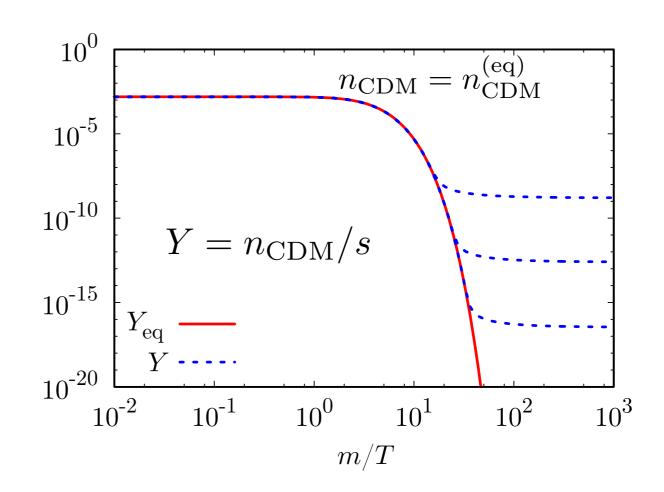
Thermally produced WIMP

creation/annihilation rate for DM : $\Gamma_{\rm ann} = \langle \sigma_{\rm ann} v \rangle n_{\rm CDM}$

 $\Gamma_{
m ann} > H$ — DM is in thermal equilibrium

 $\Gamma_{\mathrm{ann}} < H$ — DM is decoupled from thermal bath





- "Sudden" freeze-out formalism -

to calculate isocurvature perturbation

CDM freezes out suddenly at

$$H = \Gamma_{\rm ann} = \langle \sigma_{\rm ann} v \rangle n_{\rm CDM}$$
 at $N = N_{\rm fr}$

before freeze-out

$$n_{\text{CDM}} = n_{\text{CDM}}^{(\text{eq})}(T)$$

after freeze-out

$$in_{CDM} = n_{CDM}^{(eq)}(T_{fr})e^{-3(N-N_{fr})}$$

$$n^{\text{(eq)}} = \frac{g_*}{2\pi^2} \int_m^{\infty} \sqrt{E^2 - m^2} \frac{EdE}{e^{E/T} \pm 1}$$

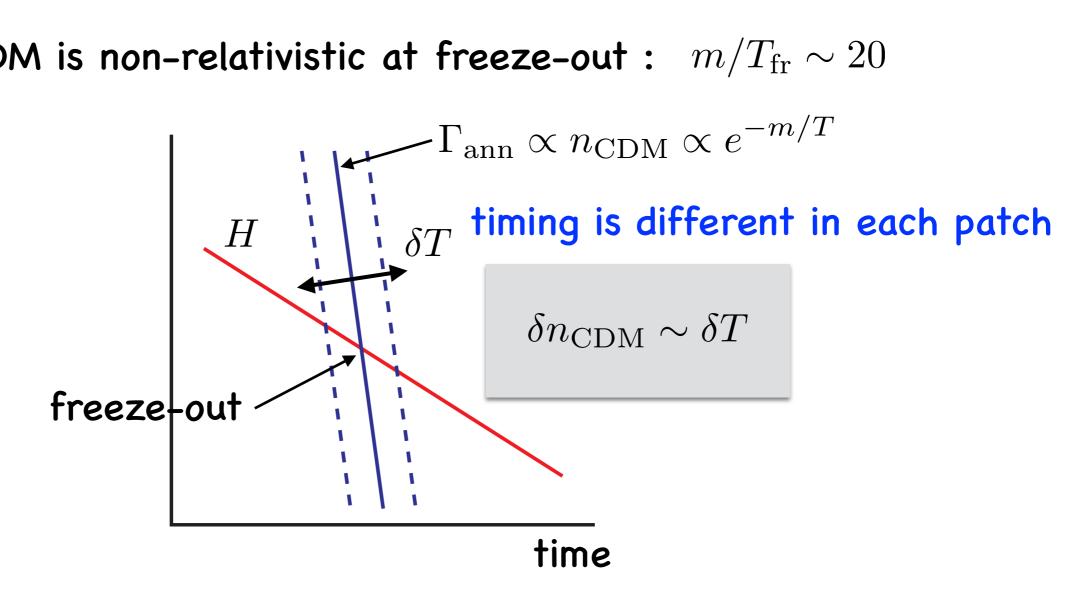
non-relativistic limit —
$$n^{(eq)} \simeq g_* \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

"Residual" CDM isocurvature perturbation

$$S_{\text{CDM}} = 3(\zeta_{\text{CDM}} - \zeta) = \frac{\delta(n_{\text{CDM}}/s)}{n_{\text{CDM}}/s}$$

$$\zeta = \frac{r_s}{3} S_i, \quad r_s = \frac{3\Omega_{\sigma, \text{dec}}}{3\Omega_{\sigma, \text{dec}} + 4\Omega_{r, \text{dec}}}$$

DM is non-relativistic at freeze-out : $m/T_{\rm fr} \sim 20$



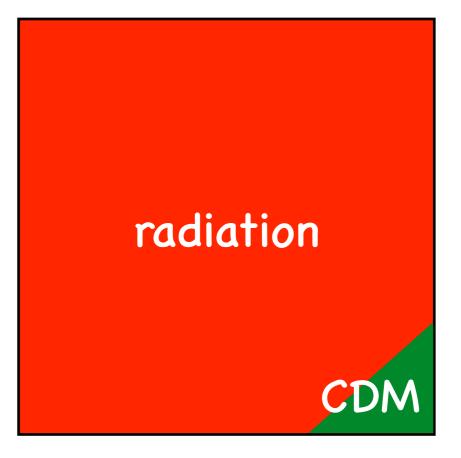
case 1 — CDM freeze-out after curvaton decay

$$H=\Gamma_{
m ann}\ \Rightarrow\ 3M_P^2\Gamma_{
m ann}^2=
ho_r(N_{
m fr})$$
 – single component $\zeta_{
m CDM}=\zeta\ \Rightarrow\ S_{
m CDM}=0$

before freeze-out

radiation + CDM

after freeze-out



case 2 — CDM freeze-out before curvaton decay

$$\rho_r + \rho_\sigma = 3M_P^2 \Gamma_{\rm ann}^2$$

radiation-curvaton fluid (2-component)

$$S_{\rm CDM}/\zeta = 3 \left[\frac{\Omega_{\sigma, \rm fr}}{r_s} \left(\frac{m}{T_{\rm fr}} - \frac{3}{2} \right) \frac{1}{2(\alpha_{\Lambda, \rm fr} - 2) + \Omega_{\sigma, \rm fr}} - 1 \right]$$

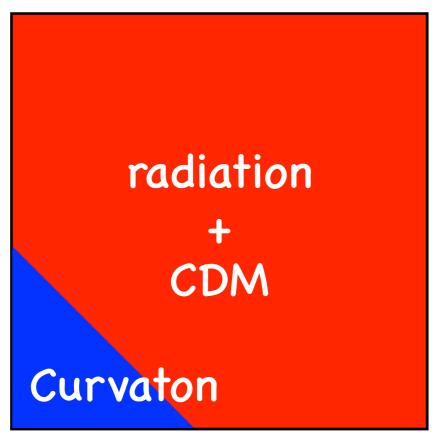
$$\alpha_{\Lambda, \text{fr}} \equiv \left. \frac{d \ln \Gamma_{\text{ann}}}{d \ln T} \right|_{\text{fr}}$$

 $lpha_{\Lambda,{
m fr}}\equiv rac{d\ln\Gamma_{
m ann}}{d\ln T}$ (consistent with Lyth, Wands astro-ph/0306500) NK, Langlois, Takahashi, Yokoyama in prep

non-relativistic limit:

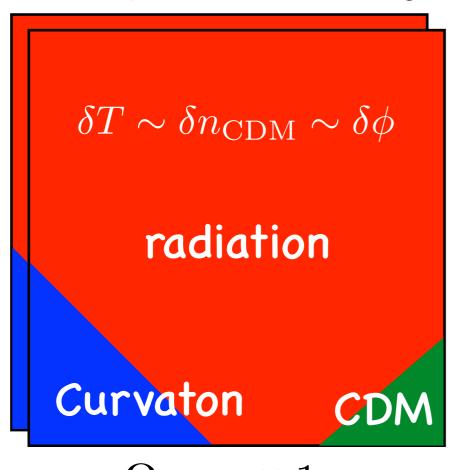
$$\alpha_{\Lambda, \text{fr}} \approx \frac{m}{T_{\text{fr}}} \gg 1 \Rightarrow S_{\text{CDM}}/\zeta \approx 3\left(\frac{\Omega_{\sigma, \text{fr}}}{2r_s} - 1\right)$$

before CDM freeze-out



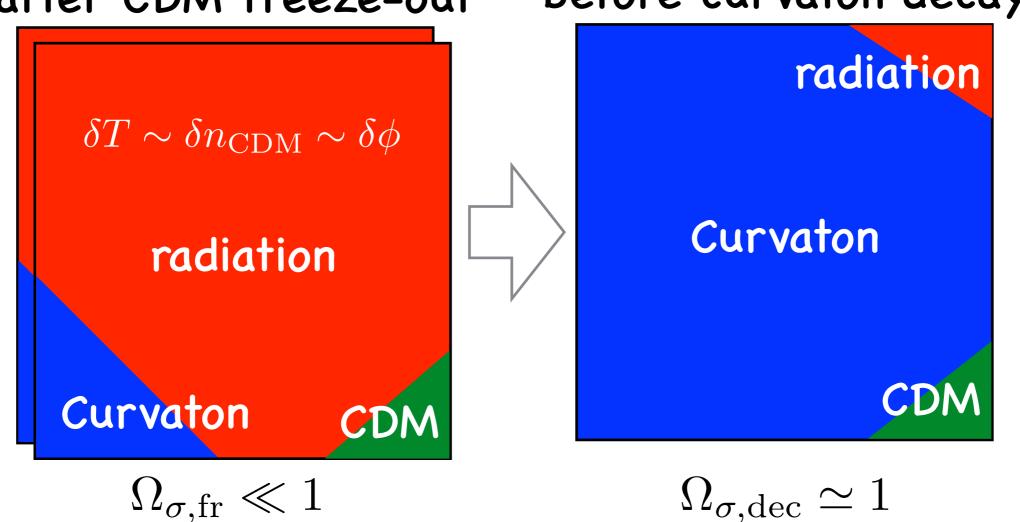
$$\Omega_{\sigma,\mathrm{fr}} \ll 1$$

after CDM freeze-out



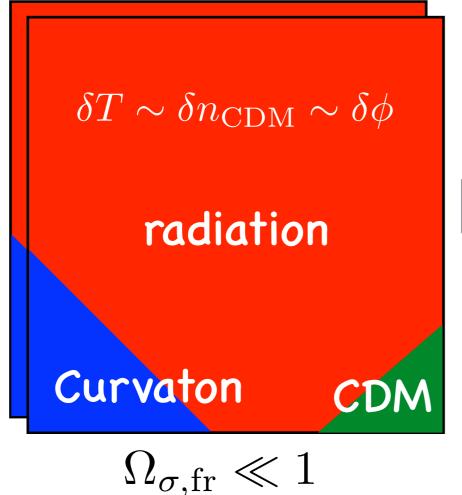
$$\Omega_{\sigma,\mathrm{fr}} \ll 1$$

after CDM freeze-out before curvaton decay



after CDM freeze-out

after curvaton decay



 $\delta T \sim \delta \sigma$

CDM

$$\Omega_{\sigma, \mathrm{dec}} \simeq 1$$

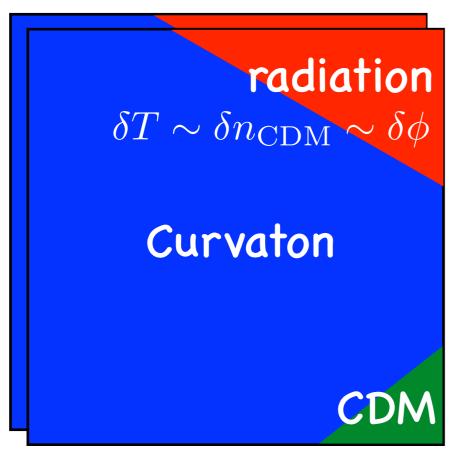
$$S_{
m CDM}/\zeta pprox 3igg(rac{\Omega_{\sigma,{
m fr}}}{2r_s}-1igg) \simeq -3$$
 ruled out!

before CDM freeze-out

radiation + CDM Curvaton

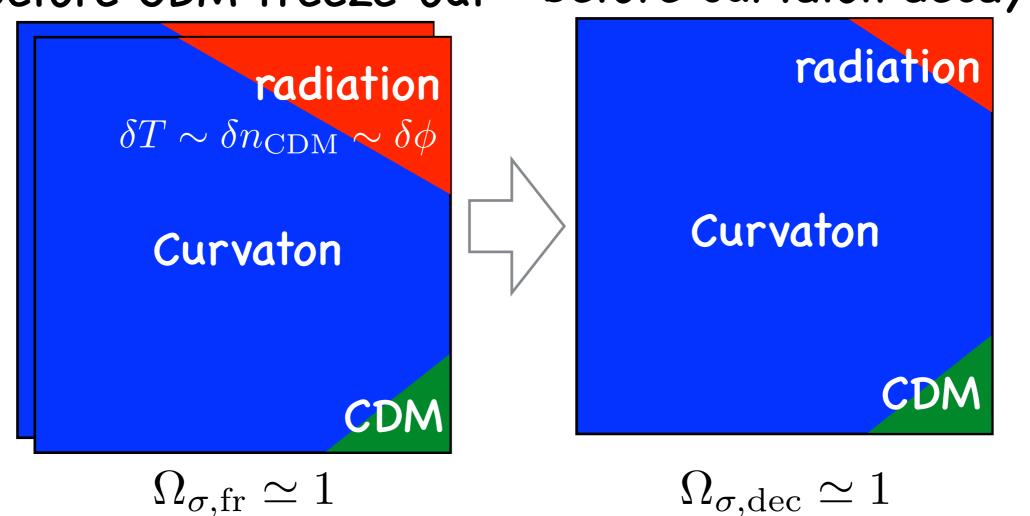
$$\Omega_{\sigma, \mathrm{fr}} \simeq 1$$

before CDM freeze-out



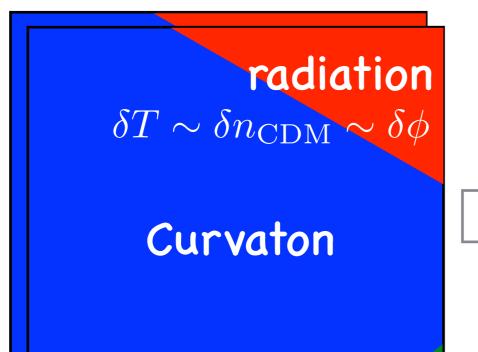
$$\Omega_{\sigma, \mathrm{fr}} \simeq 1$$

before CDM freeze-out before curvaton decay



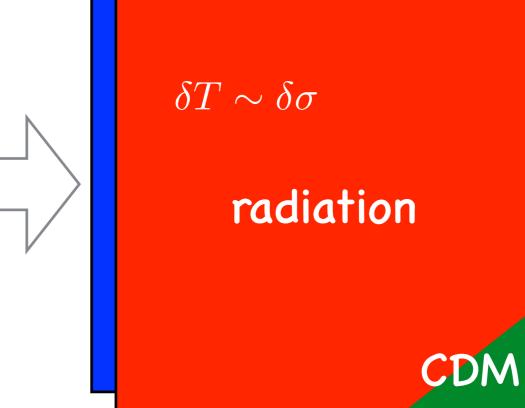
before CDM freeze-out

after curvaton decay



$$\Omega_{\sigma, \mathrm{fr}} \simeq 1$$

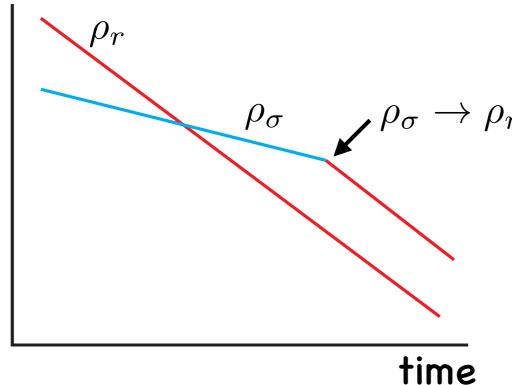
CDM



$$\Omega_{\sigma,
m dec} \simeq 1 \quad r_s \sim 1$$

$$S_{
m CDM}/\zeta pprox 3igg(rac{\Omega_{\sigma,{
m fr}}}{2r_s}-1igg) \simeq -rac{3}{2}$$
 ruled out??

sudden decay approximation



$$\begin{array}{ccc} \dot{\rho}_r + 4H\rho_r = 0 \\ \dot{\rho}_\sigma \to \rho_r & \dot{\rho}_\sigma + 3H\rho_\sigma = 0 \end{array} \quad \text{until decay}$$

it is not valid in some cases e.g. T-dependent decay rate

NK,Langlois,Takahashi,Takesako and Yokoyama 1407.5148

More realistic analysis

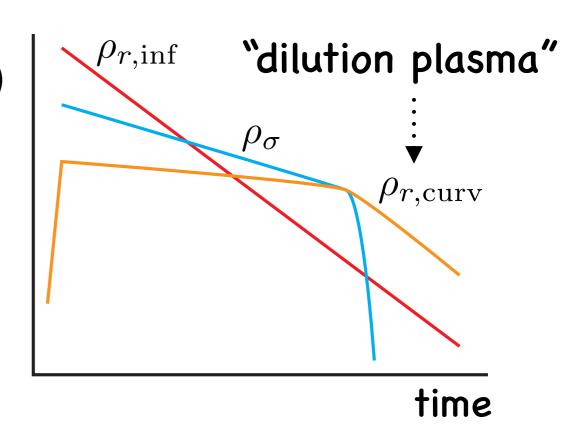
(numerical analysis)

$$\dot{\rho}_{\sigma} + 3H\rho_{\sigma} = -\Gamma\rho_{\sigma}$$

$$\dot{\rho}_{r} + 4H\rho_{r} = \Gamma\rho_{\sigma}$$

$$\rho_{r} \rightarrow \dot{\rho}_{r,\inf} + 4H\rho_{r,\inf} = 0$$

$$\dot{\rho}_{r,\operatorname{curv}} + 4H\rho_{r,\operatorname{curv}} = \Gamma_{\sigma}\rho_{\sigma}$$

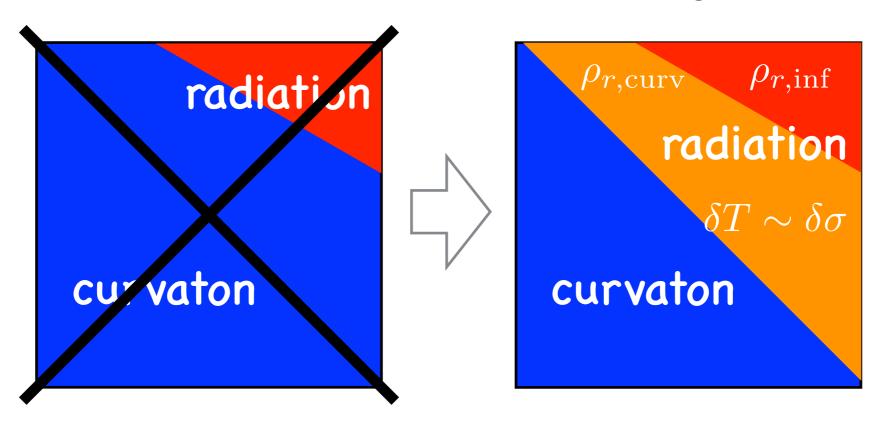


w/o dilution plasma :
$$ho_r=
ho_{r,\mathrm{inf}}, \ T=\left[rac{30}{\pi^2g_*}
ho_{r,\mathrm{inf}}
ight]^{1/4}$$

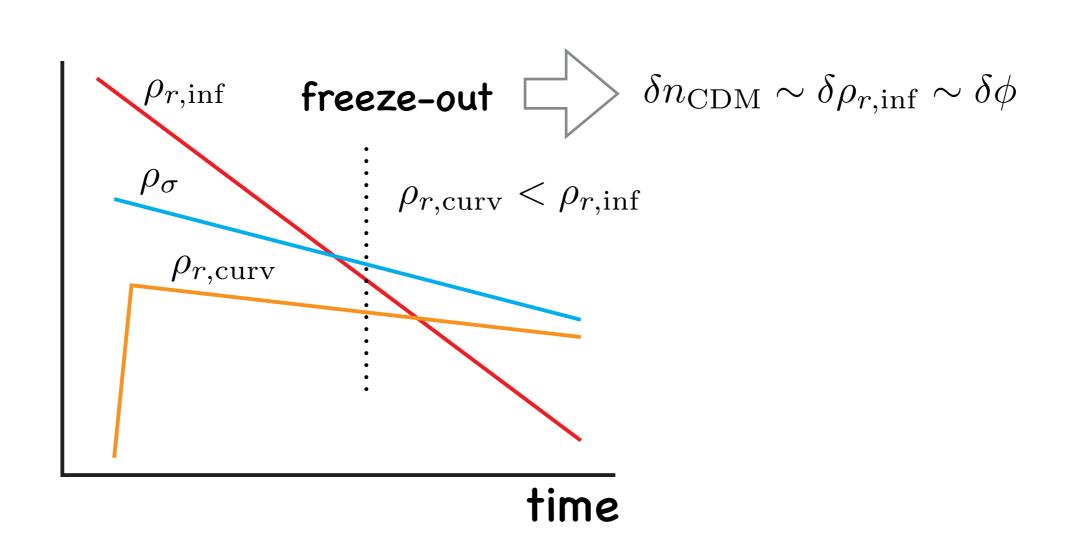
w/ dilution plasma

$$\rho_r = \rho_{r,\text{inf}} + \rho_{r,\text{curv}}, \quad T = \left[\frac{30}{\pi^2 g_*} (\rho_{r,\text{inf}} + \rho_{r,\text{curv}}) \right]^{1/4}$$

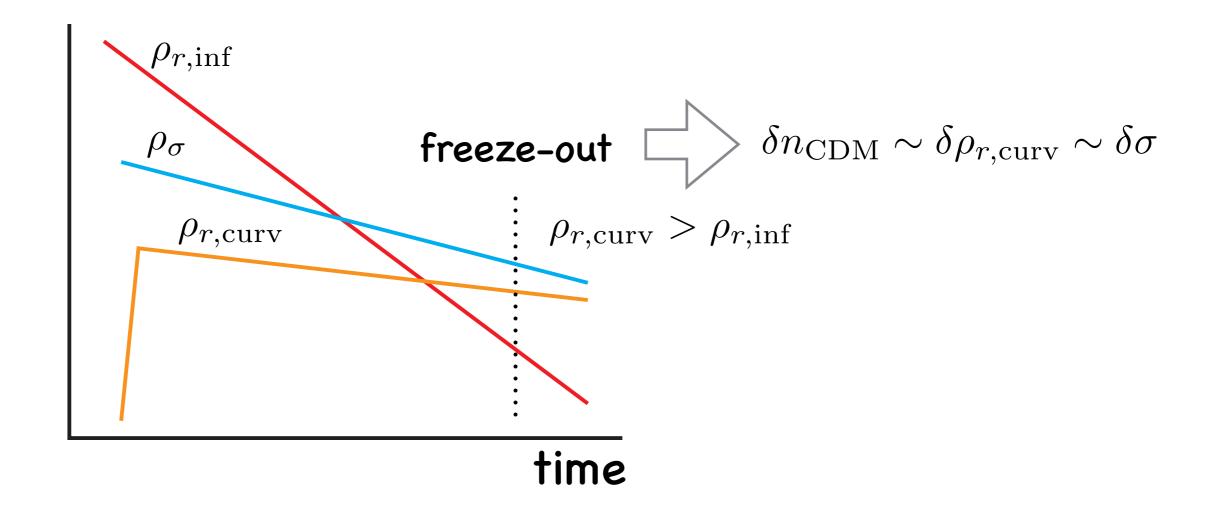
 $ho_{r, ext{curv}} \propto a^{-3/2}$ see e.g. Kolb & Turner



Primordial radiation vs dilution plasma



Primordial radiation vs dilution plasma



$$\rho_{r, \text{inf}} \gg \rho_{r, \text{curv}} \Rightarrow S_{\text{CDM}}/\zeta \simeq 0$$

Numerical calculations

$$H^2 = \frac{1}{3M_P^2} (\rho_r + \rho_\sigma + \rho_{\rm CDM}) \simeq \frac{1}{3M_P^2} (\rho_r + \rho_\sigma)$$

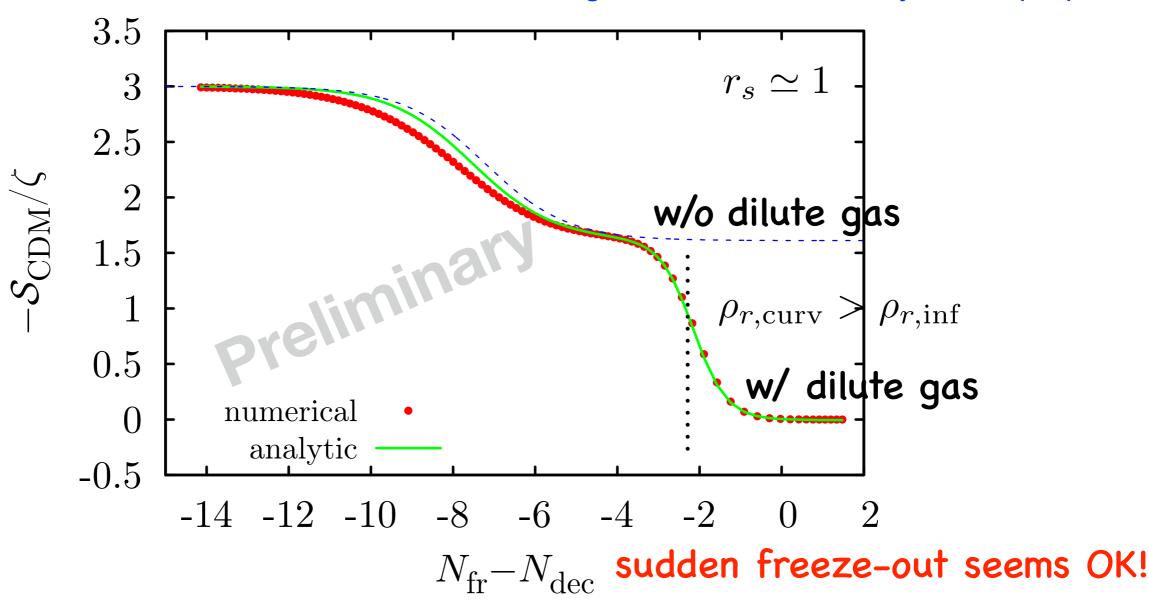
$$\dot{
ho}_r + 4H
ho_r = \Gamma
ho_\sigma \;$$
 (+ CDM annihilation)

$$\dot{\rho}_{\sigma} + 3H\rho_{\sigma} = -\Gamma\rho_{\sigma}$$

$$\dot{n}_{\rm CDM} + 3Hn_{\rm CDM} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\rm CDM}^2 + (n_{\rm CDM}^{\rm (eq)})^2 \right)$$

$$N = \int Hdt, \quad \zeta_i = \delta N + \frac{1}{3(1+w_i)} \ln \left(\frac{\rho_i}{\bar{\rho}_i}\right)$$

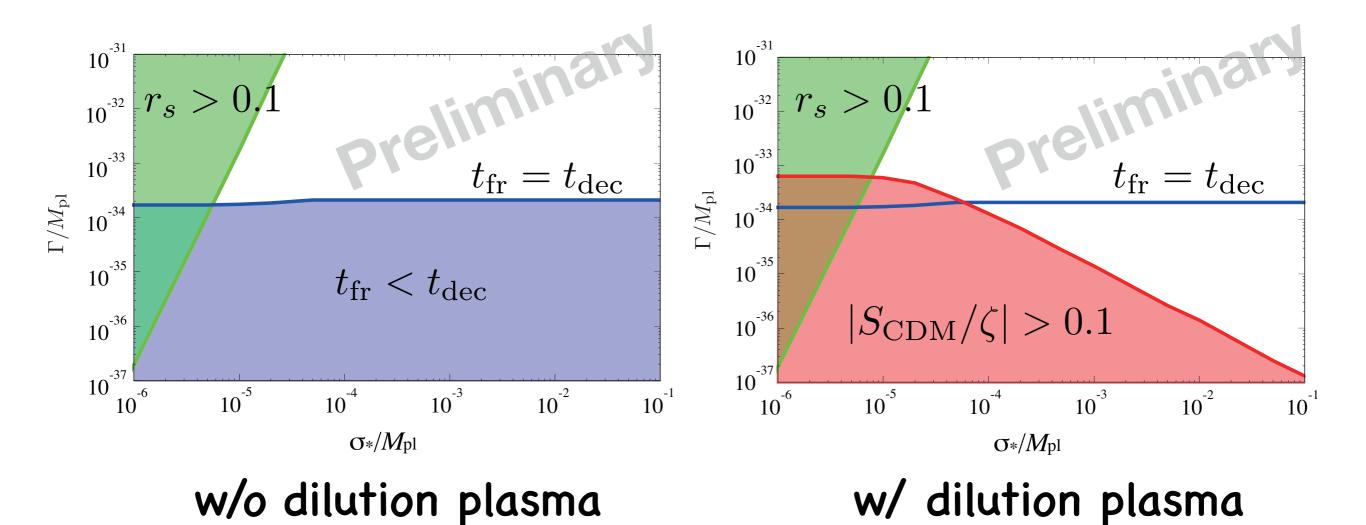
- Analytic & Numerical results -



Isocurvature vanishes if axion starts to oscillate after dilute gas exceeds primordial radiation

Allowed parameter region

NK, Langlois, Takahashi, Yokoyama in prep

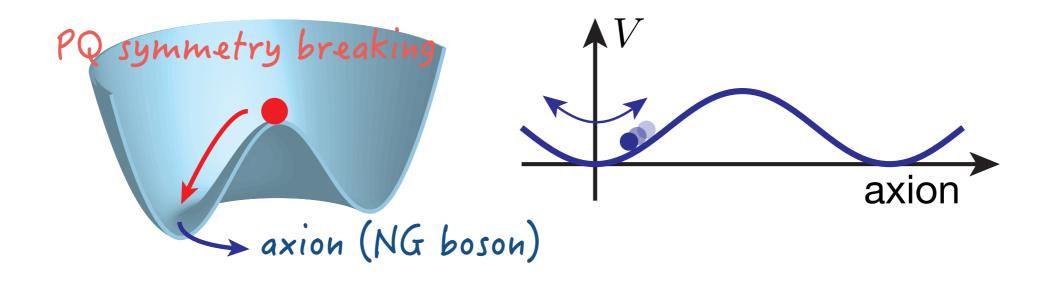


Allowed region is broadened for $\,r_s\sim 1\,$

CDM isocurvature perturbation in curvaton scenario

II. Axion dark matter

Axion dark matter —



axion mass :
$$m_a(T) \simeq \begin{cases} m_a(T_{\rm cr}/T)^{\beta} & \text{ for } T > T_{\rm cr} \\ m_a & \text{ for } T < T_{\rm cr} \end{cases}$$

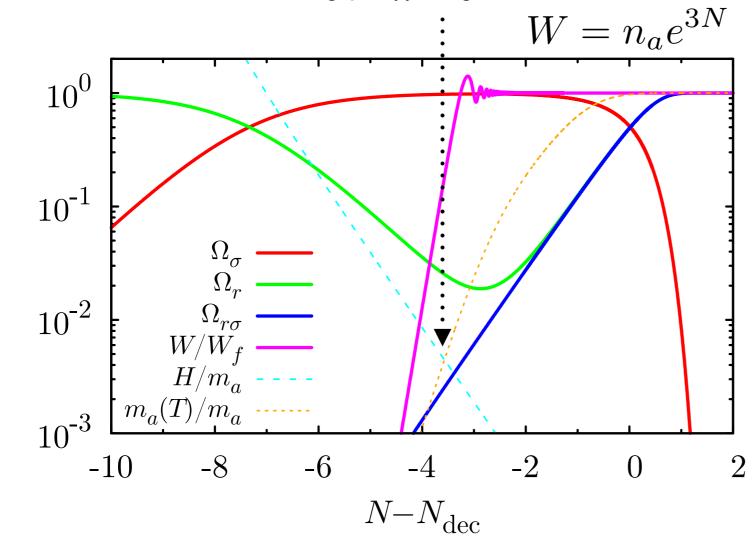
$$\begin{array}{l} \text{QCD axion:} \\ m_a(T) \, \simeq \, \begin{cases} 4.05 \times 10^{-4} \, \frac{\Lambda_{\rm QCD}^2}{F_a} \left(\frac{T}{\Lambda_{\rm QCD}} \right)^{-3.34} & T > 0.26 \Lambda_{\rm QCD} \\ \\ 3.82 \times 10^{-2} \, \frac{\Lambda_{\rm QCD}^2}{F_a} & T < 0.26 \Lambda_{\rm QCD} \end{cases} \end{array}$$

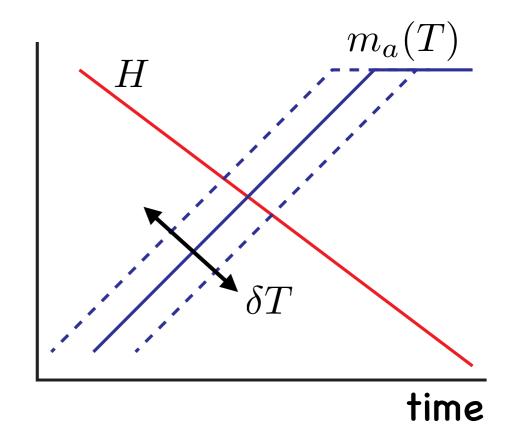
$$F_a = 10^9 - 10^{12} \text{ GeV}, \ \Lambda_{QCD} \simeq 400 \text{ MeV}$$

"Sudden" beginning of oscillation at $H=m_a(T_{\rm osc})$

$$\left. \frac{n_a}{s} \right|_{t > t_{\rm osc}} = \frac{n_a(T_{\rm osc})}{s(T_{\rm osc})}$$

oscillation





$$\delta n_a \sim \delta T$$

case 1 — Axion oscillation after curvaton decay

$$H=m_a(T_{\rm osc}) \ \Rightarrow \ 3M_P^2 m_a^2(T_{\rm osc}) = \rho_r(N_{\rm osc})$$
 - single component

$$\zeta_{\rm CDM} = \zeta \implies S_{\rm CDM} = 0$$

case 2 — Axion oscillation before curvaton decay

$$\rho_r + \rho_\sigma = 3M_P^2 m_a^2 (T_{\rm osc})$$

$$S_{\text{CDM}}/\zeta = 3\left(\frac{\Omega_{\sigma,\text{osc}}}{r_s} \frac{3+\beta}{4+2\beta-\Omega_{\sigma,\text{osc}}} - 1\right)$$

(consistent with Lyth, Wands astro-ph/0306500)

Numerical calculations

$$H^2 = \frac{1}{3M_P^2} (\rho_r + \rho_\sigma + \rho_{\rm CDM}) \simeq \frac{1}{3M_P^2} (\rho_r + \rho_\sigma)$$

$$\dot{\rho}_r + 4H\rho_r = \Gamma \rho_\sigma$$

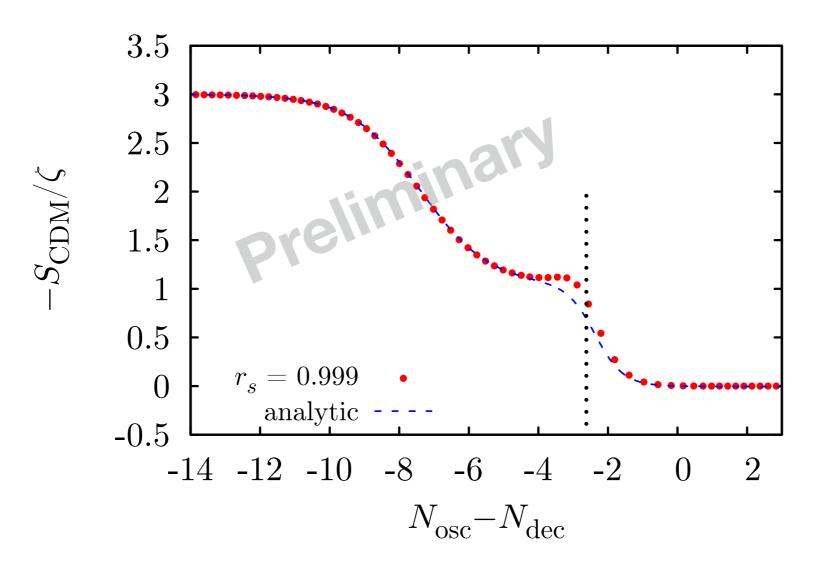
$$\dot{\rho}_{\sigma} + 3H\rho_{\sigma} = -\Gamma\rho_{\sigma}$$

$$\ddot{a} + 3H\dot{a} + m_a^2(T)a = 0 \quad \text{(axion)}$$

$$N = \int H dt, \quad \zeta_i = \delta N + \frac{1}{3(1+w_i)} \ln \left(\frac{\rho_i}{\bar{\rho}_i}\right)$$

analytic & numerical results

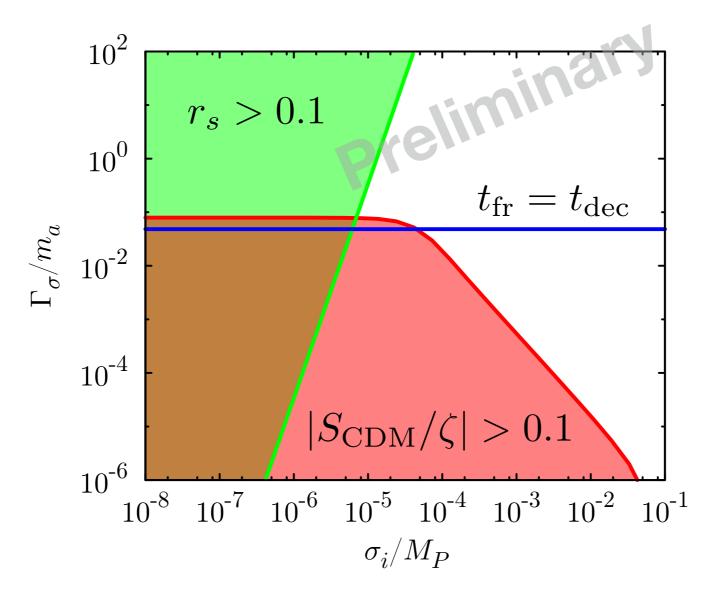
NK, Langlois, Takahashi, Yokoyama in prep



Isocurvature vanishes if axion starts to oscillate after dilute gas exceeds primordial radiation

Allowed parameter region

NK, Langlois, Takahashi, Yokoyama in prep



Allowed region is broadened for $r_s \sim 1$

- Summary -

We revisited isocurvature perturbations in curvaton model. "Residual" CDM isocurvature perturbations can be produced in this model In previous thought, it becomes large $(S/\zeta = -3 - 3/2)$ and it is already ruled out by observations unless CDM produced after curvaton decay.

Detailed analysis beyond sudden decay approximation (including dilution plasma from gradual decay of the curvaton) shows that CDM isocurvature can be suppressed even if curvaton decays after CDM production (freeze-out of WIMP/beginning of axion oscillation).

constraint from isocurvature is relaxed

good news or bad news?