The promises of Dark Energy 3rd Korea-Japan Workshop on Dark Energy Daejeon, April 4-8 2016

David Polarski

LCC, Université de Montpellier

April 6 2016

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Outlook

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Dark Energy paradigm comes from observations: SNIa Luminosity-distances

$$\mathscr{F} = \frac{L}{4\pi d_L^2} \qquad \qquad m - M = 5 \log d_L + 25$$

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Expansion different from standard cosmology

 $\ddot{a} < 0 \rightarrow \ddot{a} > 0$ @ $z \sim 0.5$

Dark Energy puzzle: What is the origin of this accelerated expansion ?

We are not really unhappy...

 $\Omega_{m,0} \approx 0.3, \quad \Omega_{DE,0} \approx 0.7, \quad \Omega_{k,0} \approx 0$

A consistent vision has emerged supported by many observations: SNIa, CMB, BAO,...

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Outlook

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

"Old" simple solution: cosmological constant Λ "...*My greatest blunder...*" A. Einstein

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho_m + \frac{\Lambda}{3}$$

Conceptual problem : $\Lambda \sim 10^{-122} I_{Pl}^{-2}$ Consistent with *all* observations ?

Many contenders: Scalar field models, modified gravity,...

But ACDM remains the model to beat!

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon nodels, f(R)

Approaches and tools

Growth function, growth index

Outlook

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Pending questions:

Is ρ_{DE} constant / Is $w_{DE} = -1$? $w_{DE}(z)$?

 $\Omega_{DE} \rightarrow 0$ for $z \gg 1$? Is DE related to Inflation?

Coupling in the dark sector ?

Smooth component?

Is DE connected to dark matter ?

Is DE a perfect fluid ?

Is gravity described by GR?

Is our universe homogeneous ? Higher dimensions ?

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon nodels, f(R)

Approaches and tools

Growth function, growth index

Outlook

・ロト・西・・田・・田・・日・

Modified gravity DE models Maybe gravity differs from GR on large scales ? Accelerated expansion without DE component ?

We keep the RW metric

$$ds^2 = dt^2 - \frac{a^2(t)}{2} d\ell^2$$

We get modified Friedmann equations They can be often recast in an "Einsteinian" way

The growth of perturbations gets modified as well! Crucial probe of modified gravity models

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

 $\blacktriangleright L = \frac{1}{16\pi G_*} \Big(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2 U(\Phi) \Big) + L_m(g_{\mu\nu})$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

 $F(\Phi) = arbitrary$

$$Z = 1 \Leftrightarrow \omega_{BD} > 0$$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2}$$

 $\omega_{BD,0} > 4 \times 10^4$

$$V = -G_{\rm eff} \; \frac{M_1 \; M_2}{r}$$

massless Φ field

$$G_{\rm eff} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3} \right)$$

•
$$G_{\mathrm{eff},0}\simeq G_{N,0}\simeq G$$

<ロト < 団 > < 豆 > < 豆 > < 豆 > の < 0</p>

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

$$\blacktriangleright L = \frac{1}{16\pi G_*} \left(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2 U(\Phi) \right) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = rac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = arbitrary$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{eff} \frac{M_1 M_2}{r} \qquad \text{massless } \Phi \text{ field}$$
$$G_{eff} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad G_N = \frac{G_*}{F}$$

 $\bullet \qquad G_{\rm eff,0}\simeq G_{N,0}\simeq G$

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

$$\blacktriangleright L = \frac{1}{16\pi G_*} \left(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2 U(\Phi) \right) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = arbitrary$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{\text{eff}} \frac{M_1 M_2}{r} \qquad \qquad \text{massless } \Phi \text{ field}$$
$$G_{\text{eff}} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad \qquad G_N = \frac{G_*}{F}$$

• $G_{
m eff,0}\simeq G_{N,0}\simeq G$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

$$\blacktriangleright L = \frac{1}{16\pi G_*} \left(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2 U(\Phi) \right) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = arbitrary$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{\text{eff}} \frac{M_1 M_2}{r} \qquad \text{massless } \Phi \text{ field}$$
$$G_{\text{eff}} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad G_N = \frac{G_*}{F}$$

• $G_{\rm eff,0} \simeq G_{N,0} \simeq G$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The promises of Dark Energy David Polarski

Scalar-tensor DE models

Modified background equations

$$3FH^2 = 8\pi G_* \rho_m + \frac{\dot{\Phi}^2}{2} + U - 3H\dot{F}$$
$$-2F\dot{H} = 8\pi G_* \rho_m + \dot{\Phi}^2 + \ddot{F} - H\dot{F}$$

Define ρ_{DE} and p_{DE} :

$$3H^{2} = 8\pi G_{N,0} (\rho_{m} + \rho_{DE}) -2\dot{H} = 8\pi G_{N,0} (\rho_{m} + \rho_{DE} + \rho_{DE})$$

 $\frac{dh^2}{dz} < 3 \ \Omega_{m,0} \ (1+z)^2 + 2 \ \Omega_{k,0} \ (1+z) \iff \text{ phantom}$

Possible in scalar-tensor models $8\pi G_* (\rho_{DE} + \rho_{DE}) = \dot{\Phi}^2 + \ddot{F} - H\dot{F} + 2(F - F_0) \dot{H}$

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Modified background equations

$$3FH^2 = 8\pi G_* \rho_m + \frac{\dot{\Phi}^2}{2} + U - 3H\dot{F}$$
$$-2F\dot{H} = 8\pi G_* \rho_m + \dot{\Phi}^2 + \ddot{F} - H\dot{F}$$

Define ρ_{DE} and p_{DE} :

$$3H^{2} = 8\pi G_{N,0} (\rho_{m} + \rho_{DE}) -2\dot{H} = 8\pi G_{N,0} (\rho_{m} + \rho_{DE} + \rho_{DE})$$

•
$$\frac{dh^2}{dz} < 3 \ \Omega_{m,0} \ (1+z)^2 + 2 \ \Omega_{k,0} \ (1+z) \iff \text{ phantom}$$

Possible in scalar-tensor models $8\pi \ G_* \ (\rho_{DE} + \rho_{DE}) = \dot{\Phi}^2 + \ddot{F} - H\dot{F} + 2(F - F_0) \dot{H}$

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

$$L = \frac{1}{2} \Big(F(\Phi) R - Z \partial_{\mu} \Phi \partial^{\mu} \Phi - 2 U(\Phi) \Big)$$

$$ZF = -\frac{1}{6}\Phi^2 + \kappa^{-2}$$
$$ZU = \frac{\Lambda}{\kappa^2} - c\Phi^4 \qquad \Lambda, \ c > 0$$

$$3H^2 = \Lambda + \kappa^2 \frac{A}{a^4},$$
$$\frac{1}{2} \left(\frac{d\chi}{d\eta}\right)^2 - c\chi^4 = A \qquad \chi \equiv a\Phi$$

$$a_B = \left(rac{-A\kappa^2}{\Lambda}
ight)^4 \qquad A < 0$$

Family of non-degenerate spatially flat integrable bouncing solutions

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

In EF (Quintessence!): integrable solutions with inverted double-well potential

Figure: It is seen that Φ is a monotonically growing function of ϕ . The limit $\Phi \rightarrow \frac{\sqrt{6}}{\kappa} \equiv \Phi_{max}$ corresponds to $\phi \rightarrow \infty$. The interval $0 < \phi < \infty$ covers the physically viable interval $0 < \Phi < \Phi_{max}$ for which F > 0 in the JF.

The promises of Dark Energy

David Polarski

Scalar-tensor DE

models

Figure: The EF potential *V* is shown in the case Z = 1 for the same parameters. The value $\phi = \infty$ corresponds to $\Phi = \frac{\sqrt{6}}{\kappa} \equiv \Phi_{max}$, the unphysical limit where *F* vanishes and for which either a Big Bang or a Big Crunch takes place in the EF.

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Technical details

$$ds^2 = (1+2\phi)dt^2 - a^2(1-2\psi)d\mathbf{x}^2$$

 $\phi = \psi - rac{\delta F}{F}$

In quasi static limit

Perturbed dilaton equation of motion:

$$\delta \Phi = (\phi - 2\psi) \frac{dF}{d\Phi} = -\phi \sqrt{F} \frac{\sqrt{\omega_{BD}}}{2 + \omega_{BD}}$$

Combination of the perturbed Einstein equations:

~

$$\frac{k^2}{a^2} \phi = 4\pi \mathbf{G}_{\mathrm{eff}} \rho_m \,\delta_m$$

$$\Rightarrow \ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G_{\rm eff} \rho_m \,\delta_m = 0$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

The promises of Dark Energy

David Polarski

Dark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

$$L = \frac{R}{16\pi G_*} - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \ \partial_\nu \phi - V(\phi) + L_m \left[\Psi_m; A^2(\phi) \ g_{\mu\nu} \right]$$

Interacting dark sector

$$\begin{array}{l} f(R) \text{ modified gravity DE models: } R \to f(R) \\ \text{e.g. } R - \lambda R_c \left(1 - \left(1 + \frac{R^2}{R_c^2} \right)^{-n} \right), \ n, \lambda > 0 \ (n \ge 2) \end{array}$$

$$G_{\rm eff}(z, k) = \frac{G_*}{F} \left(1 + \frac{1}{3} \frac{\frac{k^2}{a^2 m^2}}{1 + \frac{k^2}{a^2 m^2}} \right) \frac{F}{F'} \equiv 3 m^2$$

$$\Leftrightarrow V(r) = -\frac{G_*}{F} \frac{M_1 M_2}{r} \left(1 + \frac{1}{3} e^{-mr} \right) \quad (1)$$

Chameleon mechanism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

The promises of Dark Energy

David Polarski

ark Energy

Cosmological constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Horndeski model

Galileon model

modified Friedmann eqs with "effective" $\rho_{DE}(\phi, \dot{\phi})$ $w_{DE,0} = -1, w_{DE}$ can be < -1 $G_{\text{eff}}(z) \Rightarrow$ signature in the perturbation growth Laboratory and solar system constraints: Vainshtein mechanism

Massive gravity

Mimetic matter

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Outlook

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Various theoretical frameworks and approaches:

PPF (Parametrized Post-Friedmannian)

EFT (Effective Field Theory)

Cosmographic approach, Reconstruction

Phenomenological tools:

EoS parametrizations, null-tests, growth index,...

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon models, f(R)

Approaches and tools

Growth function, growth index

Outlook

・ロト・西ト・山田・山田・山下

Matter perturbations can be characterized by the "growth function" $f = \frac{d \ln \delta}{d \ln a} \equiv \frac{d \ln \delta}{dx}$

$$\frac{df}{dx} + f^2 + \frac{1}{2} \left(1 - 3 w_{\text{eff}}\right) f = \frac{3}{2} \frac{G_{\text{eff}}}{G} \Omega_m$$

A convenient "parameterization" $f = \Omega_m^{\gamma}$. Actually

$$\delta_m(\mathbf{Z}, \mathbf{k}) \Leftrightarrow \gamma = \gamma(\mathbf{Z}, \mathbf{k})$$

In Λ CDM: $\gamma \simeq 0.55$ It can be very different in modified gravity models!

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon nodels, f(R)

Approaches and tools

Growth function, growth index

Outlook

・ロト・日本・日本・日本・日本・日本

The promises of

The black line gives the **true** value of γ_0 realized: same non vanishing $\gamma'_0 \approx -0.02$, $\gamma_0 \approx -0.02$

BAO

Acoustic scale at various $z \Rightarrow D_A(z)$ and H(z)

BAO forecasts for a Full-Sky survey

The promises of Dark Energy

David Polarski

Dark Energy

Z _{min}	Z max	Vol	% Err $D_A(z)$	% Err <i>H</i> (<i>z</i>)	Ω_{Λ}	$\sigma_{W}^{\text{constant}}$
0.00	0.15	0.33	2.8	4.9	0.708	0.64
0.15	0.32	2.62	0.95	1.7	0.616	0.088
0.32	0.51	7.89	0.53	0.96	0.515	0.036 ^{els}
0.51	0.73	16.5	0.35	0.63	0.413	0.02 1 meleon
0.73	0.99	28.4	0.26	0.46	0.318	0.01,5roaches and
0.99	1.28	42.9	0.21	0.36	0.236	0.013
1.28	1.62	59.0	0.17	0.28	0.170	0.0 growth function,
1.62	2.00	75.8	0.14	0.24	0.119	0.013 ^{ook}
2.00	2.44	92.3	0.13	0.21	0.082	0.014
2.44	2.95	108	0.12	0.18	0.056	0.016
2.95	3.53	121	0.11	0.17	0.038	0.020
3.53	4.20	133	0.10	0.15	0.025	0.025
4.20	4.96	142	0.10	0.15	0.017	0.033

The art of inducing accelerated expansion: Large variety of models and approaches

Phenomenology $\approx \Lambda CDM$

The promise of DE is not clear yet...

The promises of Dark Energy

David Polarski

Dark Energy

Cosmologica constant

Pending questions

Modified gravity

Scalar-tensor DE models

Chameleon nodels, f(R)

Approaches and tools

Growth function, growth index

Outlook

・ロト・西ト・山田・山田・山下