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Plan of Talk

• UV problem in perturbation theory

Perturbation theory of large-scale structure as a precision 
cosmological tool: limitation and beyond

•  Post-collapse PT: new perturbative description beyond 
shell-crossing in 1D cosmology

F. Bernardeau, S. Colombi (IAP),  A. Halle (MPA), I. Hashimoto 
(YITP), T. Nishimichi (Kavli IPMU), Y. Rasera (Paris Observatory)

Collaborators

•  Response function: characterizing nonlinear mode coupling



Large-scale structure
Matter inhomogeneity over Giga parsec scales

Provide a wealth of cosmological information

Is key observations in post-Planck precision cosmology  

Main focuses:

BAO (baryon acoustic oscillations)
RSD (redshift-space distortions)
Free-streaming damping due to massive-𝜈

Test of gravity

Dark energy

k<0.2–0.3 h/Mpc at z~0.5~1.5Regime of our interest :

→ weakly nonlinear regime of gravitational evolution

Need an accurate theoretical description (e.g., for template) 



Power spectrum in simulations

Weakly nonlinear

Fully Nonlinear

Linear
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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Perturbation theory (PT): reloaded

Juszkiewicz (’81), Vishniac (’83), Goroff et al. 
(’86), Suto & Sasaki (’91), Makino, Sasaki & 
Suto (’92), Jain & Bertschinger (’94), …

CDM + baryon → pressureless & irrotational fluid

Single-stream approx. of Vlasov-Poisson system

2-loop (next-to-next-
to leading order)

• Improving accuracy by resummation or renormalized PT treatment

Basic 
eqs.

Recent progress

• Incorporating other systematics (massive ν, modified gravity, halo bias,…)

• Higher-order calculation & fast PT code

Standard PT
� = �1 + �2 + �3 + · · ·

(�1 � 1)

(RegPT)



Performance of resummed PT

AT, Bernardeau, Nishimichi & Codis ('12)

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2–0:3h Mpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.

TARUYA et al. PHYSICAL REVIEW D 86, 103528 (2012)

103528-10

cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.

DIRECT AND FAST CALCULATION OF REGULARIZED . . . PHYSICAL REVIEW D 86, 103528 (2012)

103528-11

Power spectrum

fast resummed PT codeRegPT
(http://ascl.net/1404.012)

including 2-loop (next-to-next-to-leading) order

RegPT
Linear

RegPT
Linear

Correlation function

Lbox = 2, 048 h�1 Mpc

# of particles：1, 0243

# of runs：
cosmology：wmap5

60



Just a flash
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FIG. 7. Monopole (left) and quadrupole (right) moments of the redshift-space bispectrum for the equilateral triangles, plotted as function of
wave number k at z = 1 (top), 0.5 (middle), and 0 (bottom). Here, the PT models involving the damping function DFoG are compared with
the measured results obtained from the LR data of N-body simulations. The predictions of tree- and one-loop PT model are depicted as blue
dashed and magenta solid lines, respectively. In plotting the predictions, the free parameter σv in the damping function is determined by
fitting the monopole and quadrupole moments to the N-body data at 0.05h Mpc−1≤ k ≤ kmax, with kmax indicated by the vertical arrows in
each panel. Note that the error bars depicted as solid and dotted lines respectively represent the statistical error averaged over the number of
realizations, and the one including both the statistical and systematic errors (see Sec. IV D).
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Application to BAO/RSD
Beutler et al.  (’17)

BOSS DR12

16 Florian Beutler et al.
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Figure 10. The best fit power spectrum monopole (blue), quadrupole (red), and hexadecapole (black) models (lines) compared to the
BOSS DR12 measurements (data points) in the three redshift bins used in this analysis. The measurements for the North Galactic Cap
(NGC) are shown as solid circles, while the South Galactic Cap (SGC) data are displayed as open squares. The solid line represents the
fit to the NGC, while the dashed line shows the result for the SGC. The best fitting models include the irregular µ distribution e↵ect
as explained in eq. 40, which is more prominent in the SGC since the volume is smaller. The NGC and SGC power spectra are fitted
simultaneously for f�8, ↵k, and ↵?, while we marginalise over di↵erent NGC and SGC nuisance parameters (b1�8, b2�8, N and �v). As
a result, the best fit power spectra show di↵erent shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels
show the residual for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters ↵?, ↵k, and f�8.
The blue contours use the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range
is k = 0.01 - 0.15h Mpc�1 for the monopole and quadrupole, and k = 0.01 - 0.10h Mpc�1 for the hexadecapole. The numerical values
are summarised in Table 3.

straint of f(ze↵)�8(ze↵) = 0.395 ± 0.064 at ze↵ = 0.32 and
f(ze↵)�8(ze↵) = 0.442 ± 0.037 at ze↵ = 0.57 for LOWZ
and CMASS, respectively. The LOWZ result is significantly
(more than 1�) smaller than our constraint in the low-
redshift bin, which is f(ze↵)�8(ze↵) = 0.482 ± 0.053 at
ze↵ = 0.38. There are many potential sources for this dif-
ference: (1) Our low redshift bin covers a redshift range
of z = 0.2 - 0.5, which is slighter higher compared to the
redshift range of z = 0.2 - 0.43 of LOWZ, (2) the addi-
tional data in our analysis (chunks 2-6) causes a di↵erence
in the target selection mainly in the low redshift bin, (3)
Gil-Marin et al. (2015) fit the power spectrum monopole
and quadrupole down to kmax = 0.24h Mpc�1 compared to
kmax = 0.15h Mpc�1 in our analysis, which suggests that

their constraint is dominated by high k modes, and (4) we
include the hexadecapole in our analysis, which is not used
in Gil-Marin et al. (2015).

The consistency between our results and our companion
papers Sanchez et al. (2016), Grieb et al. (2016), and Sat-
pathy et al. (2016) is discussed in Alam et al. (2016).

9.4 Comparison to other galaxy survey

Figure 12 compares our measurements of the AP parameter
and f�8 with measurements from the 6-degree Field Galaxy
Survey (6dFGS, black data point, Beutler et al. 2012) at
ze↵ = 0.067 and the WiggleZ survey (red contours, Blake
et al. 2012) at ze↵ = 0.44, 0.6 and 0.73. The 6dFGS mea-
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Figure 10. The best fit power spectrum monopole (blue), quadrupole (red), and hexadecapole (black) models (lines) compared to the
BOSS DR12 measurements (data points) in the three redshift bins used in this analysis. The measurements for the North Galactic Cap
(NGC) are shown as solid circles, while the South Galactic Cap (SGC) data are displayed as open squares. The solid line represents the
fit to the NGC, while the dashed line shows the result for the SGC. The best fitting models include the irregular µ distribution e↵ect
as explained in eq. 40, which is more prominent in the SGC since the volume is smaller. The NGC and SGC power spectra are fitted
simultaneously for f�8, ↵k, and ↵?, while we marginalise over di↵erent NGC and SGC nuisance parameters (b1�8, b2�8, N and �v). As
a result, the best fit power spectra show di↵erent shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels
show the residual for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters ↵?, ↵k, and f�8.
The blue contours use the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range
is k = 0.01 - 0.15h Mpc�1 for the monopole and quadrupole, and k = 0.01 - 0.10h Mpc�1 for the hexadecapole. The numerical values
are summarised in Table 3.

straint of f(ze↵)�8(ze↵) = 0.395 ± 0.064 at ze↵ = 0.32 and
f(ze↵)�8(ze↵) = 0.442 ± 0.037 at ze↵ = 0.57 for LOWZ
and CMASS, respectively. The LOWZ result is significantly
(more than 1�) smaller than our constraint in the low-
redshift bin, which is f(ze↵)�8(ze↵) = 0.482 ± 0.053 at
ze↵ = 0.38. There are many potential sources for this dif-
ference: (1) Our low redshift bin covers a redshift range
of z = 0.2 - 0.5, which is slighter higher compared to the
redshift range of z = 0.2 - 0.43 of LOWZ, (2) the addi-
tional data in our analysis (chunks 2-6) causes a di↵erence
in the target selection mainly in the low redshift bin, (3)
Gil-Marin et al. (2015) fit the power spectrum monopole
and quadrupole down to kmax = 0.24h Mpc�1 compared to
kmax = 0.15h Mpc�1 in our analysis, which suggests that

their constraint is dominated by high k modes, and (4) we
include the hexadecapole in our analysis, which is not used
in Gil-Marin et al. (2015).

The consistency between our results and our companion
papers Sanchez et al. (2016), Grieb et al. (2016), and Sat-
pathy et al. (2016) is discussed in Alam et al. (2016).

9.4 Comparison to other galaxy survey

Figure 12 compares our measurements of the AP parameter
and f�8 with measurements from the 6-degree Field Galaxy
Survey (6dFGS, black data point, Beutler et al. 2012) at
ze↵ = 0.067 and the WiggleZ survey (red contours, Blake
et al. 2012) at ze↵ = 0.44, 0.6 and 0.73. The 6dFGS mea-
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Figure 10. The best fit power spectrum monopole (blue), quadrupole (red), and hexadecapole (black) models (lines) compared to the
BOSS DR12 measurements (data points) in the three redshift bins used in this analysis. The measurements for the North Galactic Cap
(NGC) are shown as solid circles, while the South Galactic Cap (SGC) data are displayed as open squares. The solid line represents the
fit to the NGC, while the dashed line shows the result for the SGC. The best fitting models include the irregular µ distribution e↵ect
as explained in eq. 40, which is more prominent in the SGC since the volume is smaller. The NGC and SGC power spectra are fitted
simultaneously for f�8, ↵k, and ↵?, while we marginalise over di↵erent NGC and SGC nuisance parameters (b1�8, b2�8, N and �v). As
a result, the best fit power spectra show di↵erent shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels
show the residual for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters ↵?, ↵k, and f�8.
The blue contours use the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range
is k = 0.01 - 0.15h Mpc�1 for the monopole and quadrupole, and k = 0.01 - 0.10h Mpc�1 for the hexadecapole. The numerical values
are summarised in Table 3.

straint of f(ze↵)�8(ze↵) = 0.395 ± 0.064 at ze↵ = 0.32 and
f(ze↵)�8(ze↵) = 0.442 ± 0.037 at ze↵ = 0.57 for LOWZ
and CMASS, respectively. The LOWZ result is significantly
(more than 1�) smaller than our constraint in the low-
redshift bin, which is f(ze↵)�8(ze↵) = 0.482 ± 0.053 at
ze↵ = 0.38. There are many potential sources for this dif-
ference: (1) Our low redshift bin covers a redshift range
of z = 0.2 - 0.5, which is slighter higher compared to the
redshift range of z = 0.2 - 0.43 of LOWZ, (2) the addi-
tional data in our analysis (chunks 2-6) causes a di↵erence
in the target selection mainly in the low redshift bin, (3)
Gil-Marin et al. (2015) fit the power spectrum monopole
and quadrupole down to kmax = 0.24h Mpc�1 compared to
kmax = 0.15h Mpc�1 in our analysis, which suggests that

their constraint is dominated by high k modes, and (4) we
include the hexadecapole in our analysis, which is not used
in Gil-Marin et al. (2015).

The consistency between our results and our companion
papers Sanchez et al. (2016), Grieb et al. (2016), and Sat-
pathy et al. (2016) is discussed in Alam et al. (2016).
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and f�8 with measurements from the 6-degree Field Galaxy
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ze↵ = 0.067 and the WiggleZ survey (red contours, Blake
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Figure 10. The best fit power spectrum monopole (blue), quadrupole (red), and hexadecapole (black) models (lines) compared to the
BOSS DR12 measurements (data points) in the three redshift bins used in this analysis. The measurements for the North Galactic Cap
(NGC) are shown as solid circles, while the South Galactic Cap (SGC) data are displayed as open squares. The solid line represents the
fit to the NGC, while the dashed line shows the result for the SGC. The best fitting models include the irregular µ distribution e↵ect
as explained in eq. 40, which is more prominent in the SGC since the volume is smaller. The NGC and SGC power spectra are fitted
simultaneously for f�8, ↵k, and ↵?, while we marginalise over di↵erent NGC and SGC nuisance parameters (b1�8, b2�8, N and �v). As
a result, the best fit power spectra show di↵erent shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels
show the residual for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters ↵?, ↵k, and f�8.
The blue contours use the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range
is k = 0.01 - 0.15h Mpc�1 for the monopole and quadrupole, and k = 0.01 - 0.10h Mpc�1 for the hexadecapole. The numerical values
are summarised in Table 3.

straint of f(ze↵)�8(ze↵) = 0.395 ± 0.064 at ze↵ = 0.32 and
f(ze↵)�8(ze↵) = 0.442 ± 0.037 at ze↵ = 0.57 for LOWZ
and CMASS, respectively. The LOWZ result is significantly
(more than 1�) smaller than our constraint in the low-
redshift bin, which is f(ze↵)�8(ze↵) = 0.482 ± 0.053 at
ze↵ = 0.38. There are many potential sources for this dif-
ference: (1) Our low redshift bin covers a redshift range
of z = 0.2 - 0.5, which is slighter higher compared to the
redshift range of z = 0.2 - 0.43 of LOWZ, (2) the addi-
tional data in our analysis (chunks 2-6) causes a di↵erence
in the target selection mainly in the low redshift bin, (3)
Gil-Marin et al. (2015) fit the power spectrum monopole
and quadrupole down to kmax = 0.24h Mpc�1 compared to
kmax = 0.15h Mpc�1 in our analysis, which suggests that

their constraint is dominated by high k modes, and (4) we
include the hexadecapole in our analysis, which is not used
in Gil-Marin et al. (2015).

The consistency between our results and our companion
papers Sanchez et al. (2016), Grieb et al. (2016), and Sat-
pathy et al. (2016) is discussed in Alam et al. (2016).
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3-loop : source of trouble 

PT calculations start to get worse !!
Further including 3-loop (i.e., next-to-next-to-next-to-leading order), 

z=1.75

z=0.35

Blas et al. (’14)

next-to-next-to-next-to-leading 
order (3-loop)

N-body simulations
Standard PT 2-loop

Linear
Standard PT 3-loop

RegGp−loop
aþ ðkÞ ¼

Z
dq
q
Kp−loop

aþ ðk; qÞP0ðqÞ: (76)

We then have, for instance,

K1-loop
1þ ðk; qÞ ¼ 4πq3

!
fðq; kÞ þ 1

6

k2

q2

"
; (77)

K2−loop
1þ ðk;qÞ ¼−ð4πÞ2q3

Z
dq1

q21k
2

q21þq2
αf

!
q1
k
;
q
k

"
P0ðq1Þ:

(78)

Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.
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d ln q Kn-loop(k, q) P0(q)

A large UV 
contribution !!

Does this really happen in real universe ?



Nature of nonlinear mode-coupling
How the small-scale fluctuations affect the evolution 

of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can 
contribute to each Fourier mode in final power spectrum ?
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A measurement result
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Standard PT gets a large UV 
contribution (q-modes):
2-loop > 1-loop > N-body

Even for low-k modes,

In other words,
low-k mode in simulation 

is UV-insensitive

Gravitational screening of short-wave modes in cosmological fluids

Takahiro Nishimichi,1 Francis Bernardeau,1 and Atsushi Taruya2

1Institut d’Astrophysique de Paris
2Yukawa Institute for Theoretical Physics

We present the first measurement of the mode coupling structure of the cosmological large-scale
structure of the standard cosmological model at the level of the nonlinear power spectrum. More
specifically, we measure the response of the nonlinear matter power spectrum at wavenumber k
with respect to weakly perturbed linear power spectra at wavenumber q employing a large set of
cosmological N -body simulations. While the overall structure of the mode coupling can be accounted
for with standard perturbation theory results, our results show that the short wave modes are
strongly screened out as soon as q > k and contribute only weakly to the growth of the long-wave
modes. This is the first time such an effect is measured. Its origin is yet unclear but it is of crucial
importance for the use of large-scale cosmological data to infer fundamental cosmological of physical
parameters.
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Keywords:

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission[14], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, that is to scales where the sole
linear theory cannot be used. But such a scientific pro-
gram could then only be achieved if the properties of the
large-scale cosmological structure can be safely predicted
either from numerical simulations or from analytical in-
vestigations for any given cosmological model. In partic-
ular it is important such observables are shielded from
the details of small scale astrophysics and gas physics at
galactic or sub-galactic scales.

One way to reformulate this question is to quantify
how small scale structures can impact the growth of large
scale structure as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle at least when gravity only is at
play. The importance of such methods has been height-
ened after the detection of the baryon acoustic oscilla-
tions (BAOs) in the clustering of galaxies at late times
(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales is unavoidable. It makes PT results
in general difficult to develop in a controlled manner. We
propose here to quantify such couplings with the use of
a two-variable kernel function[15], defined as the linear
response at wave-mode k with respect to initial pertur-
bation of the linear power spectrum at wave-mode q. In
the context of PT calculations Ref. [3] showed progres-
sive broadening of the kernel function as increasing the
PT order, and speculated that a regularization scheme

in the UV domain is required to give a realistic estimate
of the high-order perturbative contributions. The recent
paper by [4] also pointed out the unsuccessful conver-
gence of PT series at late times and proposed a simple
ansatz based on the Padé approximation to suppress the
strong UV sensitivity seen in the standard PT (SPT).

If the broadness of the kernel at late times suggested
from PT calculations is true, physics at very small scale
can influence significantly the matter distribution on
large scales where the acoustic feature is prominent. It
also poses a question to the reliability of simulations, with
which we can follow the evolution of Fourier modes only
in finite dynamic range. We here present a first direct
measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
rect test of regularization schemes employed in analytical
models.

Definition and methodology.— What is the response
of the nonlinear power spectrum at wavenumber k to
the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
that a small variation in P nl is related to that of P lin as

δP nl(k) =
∫

d ln q K(k, q)δP lin(q). (2)

This relation provides us a simple way to measure the ker-
nel function from simulations. In order to do so, we pre-
pare two initial conditions with small modulations in the

Response of power spectrum at k 
to a small initial variation at q 

protected against small-scale uncertainty

negative

positive
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late time. At redshift zero, the discrepancy between the
model and simulations is striking. Furthermore analysis
of the response structure at three and higher loop order
(see e.g., [9]) suggests that PT calculations, at any finite
order, predict an even larger amplitude of the response
function in the high q region. This strongly suggests that
this anomaly is genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated in Fig. 4 it can be modeled with
a Lorentzian:

T e↵.(k, q) =
⇥
T 1�loop(k, q) + T 2�loop(k, q)

⇤ 1

1 + (q/q
0

)2

(4)
characterized by a time-dependent critical wave mode,
q
0

(z) = 0.3D�2

+

(z)h/Mpc, where D
+

is the linear growth
factor, and the prefactor 0.3 is determined by fitting to
the data. Note that, as it can be checked in Fig. 4, q

0

is
independent of k preserving the k dependence of the re-
sponse function at the small scale limit. This dependence
is in full agreement with PT predictions.

FIG. 4: Response function divided by the two-loop PT at the
three wave modes k shown in the legend. We plot data points
only at q � 2k for definiteness. The over-plotted solid lines
correspond to the empirical form (4). Small solid symbols are
L9-N9 while the big hatched are L9-N10.

Discussion—. The simulation results give a clear evi-
dence that the mode transfer from small to large scales
is suppressed compared to the PT prediction when the
mode q enters the nonperturbative regime. However, the
origin of the suppression is yet to be understood. In
particular it is not clear whether it roots genuinely shell
crossing e↵ects [46].

It might be possible that such damping e↵ect origi-
nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses the evolution of a given

wave mode with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory is based
[25, 26]. As explicitly shown in [27] equal-time spectra
are however insensitive to displacements of the global sys-
tem, that originates from wave modes smaller than k.
Displacements at intermediate scales are nonetheless ex-
pected to induce some e↵ective damping for equal-time
spectra. The physical idea behind that is that the force
driving the collapse of a large-scale perturbation (e.g., a
cluster of galaxies) is a↵ected by the small scale inhomo-
geneities within the structure (say galaxies), but that this
dependence might be damped when such small scale in-
homogeneities are actually moving within the structure.
It is however beyond the scope of this presentation to
evaluate the importance of this e↵ect.
Summary—. We have presented the first direct mea-

surement of the response function that governs the de-
pendence of the nonlinear power spectrum on the initial
spectrum during cosmic structure formation. This mea-
surement was done using a large ensemble of N -body
simulations that di↵er slightly in their initial conditions.
The results were found to be robust to the simulation
resolution – as shown in Table I – supporting the idea
that measured shapes were genuine features in the devel-
opment of gravitational instabilities.
The response functions were computed concurrently at

next and next-to-next leading order in PT. Comparisons
with measurements show a remarkable agreement over a
wide range of scale and time. We found however mode
transfers from small to large scales to be strongly sup-
pressed compared to theoretical expectations especially
at late time. We propose a description of the damping
tail with a Lorentzian shape.
These results are of far-reaching consequences. They

first give insights into the mode coupling structure of cos-
mological fluids and show that PT approaches capture
most of their properties. The small scale damping sig-
nals the validity limit of the PT beyond next-to-leading
order. It provides in particular indications on how to
regularize their contributions. The observed damping
also marks the irruption of collective non-linear e↵ects
although the underlying mechanisms are yet to be un-
covered. Most importantly the damped response sug-
gests that small scale physics, whether from the initial
metric perturbations or late-time processes, can be ef-
fectively controlled. It paves the way for solid estimates
of the theoretical uncertainties on the determination of
cosmological parameters (such as inflationary primordial
non-Gaussianities, neutrino masses or dark energy pa-
rameters) from large-scale surveys.
We thank Patrick Valageas for fruitful discussions on

analytical calculations of the response function. This
works is supported in part by grant ANR-12-BS05-0002
of the French Agence Nationale de la Recherche. TN is
supported by JSPS. AT is supported by a Grant-in-Aid
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FIG. 1: Response function measured from simulations. We
plot |K(k, q)|P lin(q) as a function of the linear mode q for
a fixed nonlinear mode at k = 0.161hMpc�1 indicated by
the vertical arrow. The filled (open) symbols show L9-N9
(L10-N9), the lines depict L9-N8, while the big hatched sym-
bols on small scales are L9-N10. Positive (negative) values
are indicated as the upward (downward) triangles or the solid
(dashed) lines.

FIG. 2: Response function predicted by PT (un-binned) up
to one- (thin solid) and two-loop (thick solid) order at k =
0.2hMpc�1 at z = 1. Dashed (dotted) lines show each of the
one- (two-)loop contributions with the legend (ij) showing
the perturbative order of the calculation. We show a negative
sign in the legend when K is negative. Note that we ignore
terms proportional to the Dirac delta function at k = q, which
is meaningful only when binning is considered.

galilean invariance of the system as discussed in e.g., [20–

24]. On the other hand, small scales are dominated by
one term at each order, P

13

(k) and P
15

(k). It has been
shown that similar terms dominate the behavior at any
order in PT.

FIG. 3: Rescaled response function, T (k, q) ⌘ [K(k, q) �
K lin(k, q)]/[qP lin(k)]. PT calculations are shown by lines,
whereas the symbols are L9-N9 (see legend for detail). The
nonlinear wave-mode bin is fixed at k = 0.161hMpc�1 (ver-
tical arrow). Binning is taken into account to the analytical
calculations consistently to the simulations.

We then rescale the response function at various red-
shifts as T (k, q) = [K(k, q)�K lin(k, q)]/[qP lin(k)], where
K lin is the linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is time-independent with this normaliza-
tion. The simulation data indeed shows little time de-
pendence at q . k in remarkable agreement with the
one-loop calculation, reproducing the expected q depen-
dence [44], as well as the change of sign between large and
small scales. The small but non-negligible z-dependence
at k ⇠ q is further reproduced by the two-loop calcula-
tion (see the figure legend). Note that at the wave-mode
k plotted here (i.e., 0.161hMpc�1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z & 1 and the agreement gets
worse at lower redshift reaching to ⇠ 5% at z = 0 (see
e.g., [10]).
At q & 0.3hMpc�1, however, the measured response

function is damped compared to the PT. The one-
loop PT predicts the response function to reach a con-
stant [45]; at the two-loop order, it grows in amplitude
with time. The numerical measurements show on the
other hand that the scaled response function is strongly
damped with decreasing redshift. It is such that the
couplings take place e↵ectively between modes of simi-
lar wavelengths. This e↵ect is particularly important at

UV suppression is seen at various k

/ 1

1 + (q/q0)2
Lorentzian

Response of power spectrum at k 
to a small initial variation at q 

K(k, q; z) = q
�Pnl(k; z)

�P0(q; z)



What’s wrong ?

What is a role of small-scale dynamics ?

Breakdown of single-stream PT treatment 

•  Higher-order mode-coupling gets a larger UV contribution

•  In simulation,  actual UV contribution is suppressed
Blas, Garny & Konstandin (’14), Bernardeau, AT & Nishimichi (’14)

Nishimichi, Bernardeau & AT (’16, ’17 in prep.)

However !

Short summary

Most likely

(even at large scales)

Multi-stream flows

12

Fig. 2.— Halo I’s color contrast images of the phase space density (left) and the corresponding profiles (right) of radial velocity (green
dashed), radial (black solid) and tangential (red dotted) velocity dispersions, for z =1 (top), 0.4 (middle) and 0 (bottom). For the contrast
image for z = 0, the self-similar solution (Filmore & Goldreich 1984; Bertschinger 1985) in the EdS universe is overplotted.

Suto et al. (2016)

(formation/merger of halos)

Is there a way to go beyond single-stream PT ?



1D cosmology
Simplification may help us to understand what’s going on

•Generic features of nonlinear mode-coupling :

•Perturbative description beyond  shell-crossing:

x

2 A. Taruya and S. Colombi

suggests a very large UV contribution to the large-scale
modes through the nonlinear mode-coupling, and indicates
the break down of higher-order perturbative calculations
even at large scales.

The deficiency of the perturbation theory calculation
has been also highlighted from recent numerical analysis.
Nishimichi et al. (2014) directly measured the coupling be-
tween the different scales with the cosmological N -body sim-
ulations, and found that the actual contribution from small
scales to the large-scale modes is suppressed, as opposed to
the prediction of perturbation theory based on the single-
stream approximation. These facts imply that the validity
of the single-stream treatment is questionable even at large
scales, and the higher-order perturbative correction needs
to be cured or remedied by a proper account of small-scale
dynamics, where the multi-stream flow is important.

One approach to address this issue may be to start with
the effective fluid equations that introduce non-vanishing
stress tensor arising from the small-scale clustering, for
which the single-stream treatment with Eqs. (4) and (5) is
unable to describe. This effective-field theory approach has
recently appeared with a great interest, and has been studied
in details (e.g., Baumann et al. 2012; Carrasco et al. 2012;
Hertzberg 2014; Baldauf et al. 2015). The drawback of this
approach is, however, that the parameters in the stress ten-
sor characterizing the small-scale dynamics need to be cali-
brated with N -body simulations, to make the prediction of
perturbative calculation under control. Furthermore, these
parameters generally varies with cosmology and redshifts,
and no prediction with perturbation theory is possible inde-
pendently of N -body simulations.

Alternative but a solid approach that we shall discuss
in this paper is to go back to a fundamental description,
i.e., Vlasov-Poisson system in Eqs. (1) and (2). Starting
with cold initial condition, virialized system called dark mat-
ter halos are formed at high dense region, and each sys-
tem evolves following the multi-stream flow. Thus, beyond
the single-stream treatment, dealing with multi-stream flow
is rather critical and essential. Our main goal in this pa-
per is therefore to give a perturbative description of multi-
stream dynamics beyond shell-crossing, and to investigate
the impact of such multi-stream dynamics on the statistics
of large-scale structure. For this purpose, we shall consider
the one-dimensional (1D) cosmology. With one-spatial di-
mension, dynamics of matter clustering is described by the
interaction of mass sheets moving toward left and right un-
der the influence of Hubble expansion. Despite its simplic-
ity, the dynamics in 1D modes still has a rich physics which
partly share the same features as seen in the 3D cluster-
ing. This is partly the reason why the 1D model has re-
cently attracted much attention (e.g., McQuinn & White
2016; Vlah et al. 2016; Baldauf et al. 2016). In particular,
the Zel’dovich solution gives an exact solution for the dy-
namics of mass sheets before the shell-crossing (Zel’dovich
1970; Shandarin & Zeldovich 1989), and thus starting with
Zel’dovich solution, a tractable perturbative treatment of
multi-stream flow is made possible based on the Lagrangian
description. The analytis in the present paper is an extension
of the method developed in Colombi (2015) to the cosmolog-
ical setup. We will describe perturbatively the post-collapse
dynamics around the shell-crossing region, and apply it to
several cases including the random initial conditions.

Note, finally, that the analytical study in 1D is, of
course, first step toward a proper description of 6D phase-
space dynamics. Indeed, thanks to a tremendous effort
on the development of Vlasov-Poisson code, simulation
in 6D phase-space has become available (Yoshikawa et al.
2013; Sousbie & Colombi 2015; Hahn & Angulo 2016).
Apart from few examples including self-similar solutions
(Fillmore & Goldreich 1984a,b; Bertschinger 1985; Ryden
1993; Lithwick & Dalal 2011), little has been analytically
known for the dynamics of Vlasov-Poisson system. There-
fore, the development of analytical treatment is also indis-
pensable complementary to the simulations, and even help-
ful to cross check the simulation code.

This paper is organized as follows. In Sec. 2, we be-
gin by describing the basic setup of our calculation in one-
dimensional cosmology. We then discuss in Sec. 3 the ana-
lytic treatment beyond shell-crossing, and develop the post-
collapse perturbation theory. The analytic calculation with
post-collapse perturbation is compared with N -body simu-
lations in Sec. 5. Finally, Sec. 6 is devoted to conclusion and
discussion.

2 1D COSMOLOGY

2.1 Basic setup

Consider the evolution of one-dimensional density field in
an expanding universe. In the standard picture of structure
formation, the large-scale structure evolves with the cold
initial condition. In one-dimensional case, this implies that
the phase-space distribution is confined in a one-dimensional
sheet. Thus, solving Vlasov-Poisson system with cold initial
condition is mathematically equivalent to solving the equa-
tion of motion for each mass sheet:

dx
dt

=
v
a

, (7)

dv
dt

+ H v = −1
a
∇xφ, (8)

∇2
xφ(x) = 4πGρ a2 δ(x), (9)

where the density field δ. To deal with this system, especially
for the dynamics after shell-crossing, it would be essential
to introduce the Lagrangian coordinate, q, and to express
the comoving position and the peculiar velocity of the mass
element as x(q, t) and v(q, t). Assuming the uniform density
in the Lagrangian coordinate, the mass conservation implies

dq = [1 + δ(x)] dx =⇒ δ(x) =

„
∂x
∂q

«−1

− 1. (10)

It is to be noticed that the above cosmological system
is effectively reduced to the system in a non-cosmological
setup. To do this, we introduce the super-conformal time τ
defined by (e.g., Doroshkevich et al. 1973):

dτ =
dt
a2

(11)

Also, we define the new velocity v and potential Φ:

v ≡ a v, Φ ≡ a2φ (12)

MNRAS 000, 1–21 (2015)

Response function
Post-collapse PT

Learn something in simple 1D cosmology

(# of sheets at RHS) - (# of sheets at LHS)Force /



1D Zel’dovich solution
Exact 

single-stream 
solution

Short title, max. 45 characters 3

Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.

MNRAS 000, 1–21 (2015)

Short title, max. 45 characters 3

Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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the development of phase-space structure. In each figure, the
upper and lower panels show the results without and with
adaptive smoothing, respectively. The free parameter of the
adaptivie smoothing, fcross, is set here to 1 for post-collapse
PT and 0.5 for Zel’dovich solution.

In general, as the clusters dynamically gets closer, both
the post-collapse PT and Zel’dovich solution fail to describe
the real dynamics in N -body simulations. While the post-
collapse PT can only give the perturbative correction to the
motion of clusters based on the initial density fields, the
actual motion of clusters is significantly affected by the in-
teraction with one other cluster. As a result, the location
of multi-valued regions predipcted by the post-collapse PT
becomes largely deviates from the actual position, and the
outcome of phase-space structure in N -body simulation sub-
stantially differ from what is expected from post-collapse PT
and Zel’dovich solution.

This generic trend does not change at all even if we in-
troduce the adaptive smoothing, but at the time after the
merger happens (i.e., a = 0.32), the visual impression is
rather changed. The dynamics at central part is now de-
scribed by the smoothed displacement field, with which the
predicted phase-space structure is just like those of a sin-
gle cluster. While this is totally a wrong prediction to the
merging dynamics, the substantial improvement is found
for the description at the outer part, where without adap-
tive smoothing, we still see the elongated two clusters, and
the disagreement between prediction and simulation is much
more pronounced. Introducing both adaptive smoothing and
the higher-order corrections to the post-collapse PT further
gives a better description to the merging clusters (Fig. 5 ).

The results seen in the merging clusters demonstrate
that the adaptive smoothing is indeed powerful and effec-
tive in describing the global trend of the phase-space struc-
ture. While this cannot capture the detailed inner structure
of the high-density region, it can give a better description
to a large-scale dynamics, keeping the location and size of
halos reasonably accurate. As we will see later, the adap-
tive smoothing can also give a drastic improvement on the
prediction of power spectrum in random initial conditions.
Further, the introduction of adaptive smoothing makes the
analytic calculations insensitive to the small-scale cutoff in
the initial condition, thus giving us a robust prediction. In
these respects, the criterion (iii) in Sec. 4.2 is the essen-
tial part of the adaptive smoothing procedure, and a choice
of fcross is crucial. Our various examinations suggest that
fcross = 1 and 0.5 are respectively the most optimal choice
for the post-collapse PT and Zel’dovich solution, and we
shall adopt these values in subsequent section.

5.4 Random initial condition: CDM-like spectrum

Let us now consider a more relevant cosmological set up
with random initial conditions. Although there is no realistic
setup in 1D, a relevant initial condition to be compared with
3D case may be given by the Gaussian random condisition
with the initial power spectrum:

P1D(k) =
k2

2π
P3D(k) (70)

with P3D being the matter power spectrum in 3D, which
we computed with the transfer function by Eisenstein & Hu

(1998). We set the cosmological parameters to those of
the base ΛCDM model determined by Planck Ade et al.
(2015): Ωm,0 = 0.3121, ΩΛ = 0.6879, Ωb = 0.04884,
H0 = 67.51 km s−1 Mpc−1, ns = 0.9653, σ8 = 0815. The
simulations were performed with the boxsize L = 1, 000Mpc
and initial redshift, zi = 99. The convergence of the simula-
tion results has been tested by varying the number of par-
ticles Nparticle

2, number of PM grid Ngrid and cutoff scales
of the initial power spectrum, kcut. Here, we mainly present
the results with Nparticle = 200, 000, Ngrid = 20, 000, and
kcut = 12.6Mpc−1. For the power spectrum measurement,
we ran the 50 simulations.

Fig. 6 shows the evolved results of the power spectra ob-
tained from the simulations (red) and the predictions. In left
panel, the predictions are plotted for the basic post-collapse
PT (blue solid) and Zel’dovich solution (green dotted), while
the variants of the prediction for post-collapse PT are sum-
marized in right panel, with the same color codes and line
types as in previous figures. Note that these predictions are
the measurement results. That is, based on the Zel’dovich
solution or post-collapse PT, we create the phase-space por-
trait with particles for each random initial condition, and
collecting the 50 independent realizations, the power spec-
trum is measured at each redshift from those phase-space
data. For comparison, in left panel, we also plot the analytic
power spectrum of the Zel’dovich solution, PZA(k) (black
solid line) (color code and line type for analytic power spec-
trum may have to be changed):

PZA(k; z) =

Z ∞

0

dq cos(k q)
h
e−k2{I(0)−I(q)}D+(z)2 − 1

i
;

I(q) =

Z ∞

0

dp
π

cos(p q)
P1D(p)

p2
(71)

In contrast to the 3D case, the amplitude of power spec-
trum at small scales is not strongly enhanced in 1D, and
the dimensionless power asymptotically becomes flat, i.e.,
k P (k) ≃const., as it has been predicted by a simple argu-
ment (e.g., Gouda & Nakamura 1989). Still, the deviation
from linear theory predictions is significant, and a proper
account of nonlinearity is essential for theoretical prediction.

Without the adaptive smoothing (depcited as thin
lines), the prediction with Zel’dovich solution starts to de-
viate from simulations at very early time (z = 15.3). The
post-collapse PT can capture the nonlinear growth associ-
ated with formation of halos, and it reproduces the sim-
ulation results to some extent. As decreasing the redshift,
however, the structure of halos is well-developed via the
merging and accretion processes, and the predictions de-
picted as thin lines significantly underestimate the power
spectrum even if the higher-order corrections are included
(left panel). Fig. 7 shows the phase-space structure clipped
from a particular realization data. As we see in left pan-
els, both the Zel’dovich solution and post-collapse PT fail
to reproduce the halo structures in simulation, and predict
the spurious elongated structure, leading to the underesti-
mation of the power spectrum. Note that the predictions

2 To be precise, sheets rather than particles may be more ap-
propriate terminology, as we have used in previous section. But
here, we shall follow the conventions in N -body simulation and
interchangebly use both.
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FIG. 3: Prescription (15) at z = 2 (thick black solid). Also shown are SPT (one-loop: blue dotted, two-loop: blue dashed),

MPTbreeze (two-loop: red dashed) and the damped SPT (orange dot-dashed).
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[2] Notice that the convention of the normalization for K is di↵erent from that used in our previous paper.
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3.2 Computing force in multi-valued region

To derive the corrections to the motion, we first compute the
force exerted on the mass element inside the multi-valued
region, − bQc ≤ Q ≤ bQc, shown in Fig. 1. Note that the
regions outside the shell-crossing, given at x < x(− bQc) and

x > x( bQc), are described by the Zel’dovich solution.
The force in the multi-valued region is computed with

Eq. (19), dividing each integral at the right-hand-side into
three contributions:
Z L

0

dx −→
“Z x(− bQc)

0

+

Z x( bQc)

x(− bQc)

+

Z L

x( bQc)

”
dx. (38)

Assuming that the collapse region, |Q| ≤ bQc, is small
enough, the contributions to the integrals from each do-
main can be computed analytically, based on the geomet-
rical setup in Fig. 1. The detailed calculations are presented
in Appendix B. Summing up all the contributions given in
Eqs. (B4), (B5), (B8), and (B12), the force exerted on the
mass element at x = x(Q) inside the multi-valued region
becomes

F (x(Q; τ)) = −3
2
H2

0Ωm,0 a(τ)
h
J (Q; q0, τ) + F(q0, τ)

i

(39)

with the functions J and F respectively defined by

J (Q; q0, τ) =

8
>>>>>>>>><

>>>>>>>>>:

n
1 + B(q0; τ)

o
Q − C(q0; τ) Q3

−sgn(Q)
q

3(Q̂2
c − Q2)

; Qc < |Q| < bQc,

n
−2 + B(q0; τ)

o
Q − C(q0; τ) Q3

; |Q| < Qc,

(40)

and

F(q0, τ) = −ψ(q0) D+(τ), (41)

where the quantities A, B, and C are defined by Eqs. (28)–
(30). Note that in deriving Eq. (39), we have assumed that

the system follows Zel’dovich solution at |Q| > bQc. Since
the resultant expressions are written in terms of the local
quantities characterizing the density peak at position q0 and
the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.

3.3 Corrections to the Zel’dovich flow

Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
valued region:

∆v(Q; τ, τq) =

Z τ

τq

dτ ′ F (x(Q, τ ′)), (42)

∆x(Q; τ, τq) =

Z τ

τq

dτ ′ ∆v(Q; τ ′, τq). (43)

Notice that depending on the position in Lagrangian space
of our interest, the expression of the force is different [see
Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:

(i) τ0 ≤ τ < bτc(Q) : The position Q is located at the
single-valued region (i.e., |Q| > Qc), and the motion is still
described by the Zel’dovich solution. We have

x(Q; τ) = xZel(Q; τ) ≡ q + ψ(q)D+(τ), (44)

v(Q; τ) = vZel(Q; τ) ≡ ψ(q)
dD+(τ)

dτ
. (45)

(ii) bτc(Q) ≤ τ < τc(Q) : The position Q lies at multi-

valued region, and it satisfies Qc < |Q| ≤ bQc. Thus, in
addition to the Zel’dovich flow, the corrections arising from
the multi-stream flow needs to be added:

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xout(Q; τ, bτc(Q)), (46)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vout(Q; τ, bτc(Q)). (47)

(iii) τc(Q) ≤ τ : This corresponds to |Q| ≤ Qc, and the
position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
part. We may write

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
(ii). In this case, the correction to the velocity becomes

∆vout(Q; τ, bτc) = −3
2
H2

0 Ωm,0

Z τ

bτc(Q)

dτ ′ a(τ ′)

×
n
J (Q; q0, τ

′) + F(q0, τ
′)
o

(50)

Recalling the fact that bτc − τ0 ≃ (κ/8) Q2 [see Eq. (36)], the
above integrals are performed with a help of the formulae in
Appendix D [see Eqs. (D4) and (D5)]. For the integration of
the first term, we obtain the approximate expression valid
for the short period after the shell-crossing time τ0:

Z τ

bτc(Q)

dτ ′ a(τ ′)J (Q; q0, τ
′)

≃ a(τ0)

"
T Q +

ȷ
−κ

8
+

1
6
δ′′L(q0)D+(τ0) T

ff
Q3

− sgn(Q)
κ

4
√

3

“
bQc(τ)

2 − Q2
”3/2

− κ
48
δ′′L(q0)D+(τ0) Q5

#
,

(51)
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polynomial function of Q=q-q0 up to 7th order

Computing back-reaction to the Zel’dovich flow:
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Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).
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Density profile

Post-collapse PT basically fails after next shell-crossing, but it still 
gives reasonable prediction for density profiles

Of course, this does not guarantee the accuracy of power 
spectrum prediction at small scales (→ next slide)

Simulation
Zel’dovich
Post-collapse PT



Post-collapse PT:  ΛCDM

Simulation
Zel’dovich
Post-collapse PT

(Dimensionless) power spectrum

AT & Colombi (‘17)

Phase-space

Linear

Adaptive smoothing
applied to initial density peaks 

(with filter scales determined 
by first-barrier crossing)

z=0



Implication to 3D

But, idea & technique are very promising and can be extended to 3D

•  Accurate pre-collapse description

•Tractable analytical calculation of 
statistical quantities http://www.vlasix.org/index.php?n=Main.ColDICE

x

y

vx

vy is color coded

2D collapse with Vlasov codeIssues to be addressed

✓ Zel’dovich approx. is inaccurate
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3rd 
Lagrangian PT

Zel’dovich

⇢(r) / r�1.7

Moutarde et al. (’91)

✓ Various topologies of shell crossing

Combination of the two methods are rather crucial:

PT scheme beyond shell crossing  &  Coarse-graining
(post-collapse PT) (adaptive smoothing)



Summary
Perturbation theory (PT) of large-scale structure has been 
developed as a precision tool, but it needs to be renovated

✓ UV issue in single-stream PT

✓ Response function:

✓  Post-collapse PT with adaptive smoothing in 1D: 

Characterizing nature of mode coupling

Novel scheme beyond shell crossing

Several issues still remain toward a practical application to 3D, 
and persistent study is needed with a help of 3D Vlasov code

Stay tuned, 
Not stick to effective-field-theory approach !

Do not go to 3-loop !


