|7-2| April $20 \mid 7$

Cosmological Quests for the Next Decade KASI, Daejeon

Challenges in

perturbation theory calculation of large-scale structure

Atsushi Taruya (Yukawa Institute for Theoretical Physics)

Plan of Talk

Perturbation theory of large-scale structure as a precision cosmological tool: limitation and beyond

- UV problem in perturbation theory
- Response function: characterizing nonlinear mode coupling
- Post-collapse PT: new perturbative description beyond shell-crossing in ID cosmology

Collaborators

F. Bernardeau, S. Colombi (IAP), A. Halle (MPA), I. Hashimoto (YITP), T. Nishimichi (Kavli IPMU), Y. Rasera (Paris Observatory)

Large-scale structure

Matter inhomogeneity over Giga parsec scales
Provide a wealth of cosmological information Is key observations in post-Planck precision cosmology

Main focuses:
BAO (baryon acoustic oscillations)
Dark energy
RSD (redshift-space distortions)
Test of gravity
Free-streaming damping due to massive- ν
Need an accurate theoretical description (e.g., for template)
Regime of our interest: $k<0.2-0.3 \mathrm{~h} / \mathrm{Mpc}$ at $\mathrm{z} \sim 0.5 \sim 1.5$
\rightarrow weakly nonlinear regime of gravitational evolution

Power spectrum in simulations

Perturbation theory (PT): reloaded

Single-stream approx. of Vlasov-Poisson system
CDM + baryon \rightarrow pressureless \& irrotational fluid
 $\frac{\partial \delta}{\partial t}+\frac{1}{\mathrm{a}} \vec{\nabla} \cdot[(1+\delta) \overrightarrow{\mathrm{v}}]=0$

Juszkiewicz ('8I),Vishniac ('83), Goroff et al. ('86), Suto \& Sasaki ('91), Makino, Sasaki \& Suto ('92), Jain \& Bertschinger ('94), ...

$$
\begin{aligned}
& \text { Standard PT }\left(\delta_{1} \ll 1\right) \\
& \qquad \delta=\delta_{1}+\delta_{2}+\delta_{3}+\cdots
\end{aligned}
$$

Recent progress

- Improving accuracy by resummation or renormalized PT treatment
- Higher-order calculation \& fast PT code (RegPT) 2-loop (next-to-nextto leading order)
- Incorporating other systematics (massive V, modified gravity, halo bias,...)

Performance of resummed PT

 including 2-loop (next-to-next-to-leading) order

AT, Bernardeau, Nishimichi \& Codis ('I 2)

Redshift-space power spectrum

AT, Nishimichi \& Bernardeau ('I3)

bispectrum

Hashimoto,
Rasera \& AT ('I7)
Redshift-space

.

k [h/Mpc]

Application to BAO/RSD

\square Mono.+Quad.

Beutler et al. ('I7)

BOSS DRI2

$\mathrm{k}<0.15 \mathrm{~h} / \mathrm{Mpc}$

Constraints on

- geometric distances
$D_{\mathrm{A}} \& H^{-1}(z)$
-growth rate
$f(z)$

3-loop : source of trouble

Further including 3-loop (i.e., next-to-next-to-next-to-leading order), PT calculations start to get worse !!

Does this really happen in real universe?

Nature of nonlinear mode-coupling

How the small-scale fluctuations affect the evolution of large-scale modes ? (or vice versa)
How the small disturbance added in initial power spectrum can contribute to each Fourier mode in fina Response rrum ? function
$\delta P_{\mathrm{nl}}(k)=\int d \ln q K(k, q) \delta P_{0}(q)$

A measurement result

Nishimichi, Bernardeau \& AT ('I6)
Response of power spectrum at k to a small initial variation at q

$$
K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}
$$

Even for low-k modes,
Standard PT gets a large UV contribution (q-modes): 2-loop > I-loop > N-body

In other words,
low-k mode in simulation is UV-insensitive
protected against small-scale uncertainty

Refined measurement

Nishimichi, Bernardeau \& AT ('I6 \&'I7 in prep.)
Response of power spectrum at k to a small initial variation at q

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

$$
T(k, q)=\left[K(k, q)-K^{\operatorname{lin}}(k, q)\right] /\left[q P^{\operatorname{lin}}(k)\right]
$$

UV suppression is seen at various k

What's wrong ?

Short summary

- Higher-order mode-coupling gets a larger UV contribution However! Blas, Garny \& Konstandin ('I4), Bernardeau, AT \& Nishimichi ('I4)
- In simulation, actual UV contribution is suppressed Nishimichi, Bernardeau \& AT ('I6, 'I7 in prep.)

Most likely

Breakdown of single-stream PT treatment (even at large scales)

What is a role of small-scale dynamics?
Is there a way to go beyond single-stream PT ?

Multi-stream flows

 (formation/merger of halos)
ID cosmology

Simplification may help us to understand what's going on

$$
\nabla_{x}^{2} \phi(x)=4 \pi G \bar{\rho} a^{2} \delta(x)
$$

Force \propto (\# of sheets at RHS) - (\# of sheets at LHS)

- Generic features of nonlinear mode-coupling :

Response function

- Perturbative description beyond shell-crossing: Post-collapse PT

Learn something in simple ID cosmology

ID Zel'dovich solution

(Zel'dovich '70)
Exact $\quad x(q ; \tau)=q+\psi(q) D_{+}(\tau) \quad D_{+}(\tau)$: linear growth factor single-stream solution

$$
\mathrm{v}(q ; \tau)=\psi(q) \frac{d D_{+}(\tau)}{d \tau} \quad \psi(q): \text { displacement field }
$$

Power spectrum in ID

Dimensionless initial power spectrum is the same as in 3D

manifestation of the

 limitation of singlestream treatment$L=1,000 \mathrm{Mpc}$
\# of particles (sheets) : 200, 000 \# nf rıinc: 50
by Vlafroid (PM code) http://www.vlasix.org/uploads/Main/froid I D. I.5.tar.gz

w/ A. Halle, S. Colombi \& T. Nishimichi (in progress)

Response function in ID
$K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}$

$L=100,000 \mathrm{Mpc}$
\# of particles (sheets) : 10^{7}
\# of runs : 2, 000 for each q-mode

Post-collapse PT:beyond shell-crossing

AT \& Colombi ('I7)
Cold collapse in I-D simulation
Breakdown of Zel'dovich solution

position

position

Computing back-reaction to the Zel'dovich flow:
I. Expand the displacement field around shell-crossing point, \square

$$
x(q ; \tau) \simeq A\left(q_{0} ; \tau\right)-B\left(q_{0} ; \tau\right)\left(q-q_{0}\right)+C\left(q_{0} ; \tau\right)\left(q-q_{0}\right)^{3}
$$

2. Compute force $F(x(q ; \tau))=-\nabla_{x} \Phi(x(q ; \tau))$ at multi-stream region

$$
\Delta \mathrm{v}\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} F\left(x\left(Q, \tau^{\prime}\right)\right), \quad \Delta x\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} \Delta \mathrm{v}\left(Q ; \tau^{\prime}, \tau_{\mathrm{q}}\right)
$$

Post-collapse PT: single cluster
 AT \& Colombi ('I7)

Post-collapse PT basically fails after next shell-crossing, but it still gives reasonable prediction for density profiles

Phase-space

Density profile

Of course, this does not guarantee the accuracy of power spectrum prediction at small scales (\rightarrow next slide)

Post-collapse PT: ^CDM

k $\mathrm{P}(\mathrm{k}) / \pi$

Adaptive smoothing

 applied to initial density peaks (with filter scales determined by first-barrier crossing)

AT \& Colombi (‘I7)

Implication to 3D

Combination of the two methods are rather crucial:

> PT scheme beyond shell crossing \& Coarse-graining (post-collapse PT) (adaptive smoothing)

But, idea \& technique are very promising and can be extended to 3D

Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate \checkmark Various topologies of shell crossing

Summary

Perturbation theory (PT) of large-scale structure has been developed as a precision tool, but it needs to be renovated
\checkmark UV issue in single-stream PT Do not go to 3-loop !
\checkmark Response function: Characterizing nature of mode coupling \checkmark Post-collapse PT with adaptive smoothing in ID:

Novel scheme beyond shell crossing
Several issues still remain toward a practical application to 3D, and persistent study is needed with a help of 3D Vlasov code

Stay tuned,
Not stick to effective-field-theory approach!

