#### 100 Years of the Cosmological Constant Λ : what's next?

#### Ofer Lahav (University College London)







1







# Outline

- 100 years of  $\Lambda$
- Λ on Mpc scales: Machine Learning for Local Group modelling
- The Dark Energy Survey: status of observations and new results
- The CMB Cold Spot revisited
- More than Dark Energy: from search for Planet 9
  - to Gravitational Wave follow-ups

### What accelerates the Universe?



### LCDM is "a simple but strange universe" (since 1990)





# 100 Years of Λ: What is Dark Energy?

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- Systematics mimic DE?
- Lambda-CDM, EoS w = -1.00?
- Dynamical scalar field w(z)?
- Signatures of modified gravity?
- Inhomogeneous Universe?
- Multi-verse?
- An unknown unknown??





#### Lambda from the APM galaxy clustering (1990) $\Omega_{\Lambda} = 1-0.2=0.8$

#### letters to nature

Nature 348, 705 - 707 (27 December 1990); doi:10.1038/348705a0

#### The cosmological constant and cold dark matter

G. EFSTATHIOU, W. J. SUTHERLAND & S. J. MADDOX

Department of Physics, University of Oxford, Oxford 0X1 3RH, UK



THE cold dark matter (CDM) model<sup>1-4</sup> for the formation and distribution of galaxies in a universe with exactly the critical density is theoretically appealing and has proved to be durable, but recent work<sup>5-8</sup> suggests that there is more cosmological structure on very large scales ( $l > 10 h^{-1}$  Mpc, where h is the Hubble constant  $H_0$  in units of 100 km s<sup>-1</sup> Mpc<sup>-1</sup>) than simple versions of the CDM theory predict. We argue here that the successes of the CDM theory can be retained and the new observations accommodated in a spatially flat cosmology in which as much as 80% of the critical density is provided by a positive cosmological constant, which is dynamically equivalent to endowing the vacuum with a non-zero energy density. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. As well as explaining large-scale structure, a cosmological constant can account for the lack of fluctuations in the microwave background and the large number of certain kinds of object found at high redshift.

Other pre-SNIa papers : Peebles (1984). Weinberg (1989), OL, Lilje, Primack & Rees. (1991), White et al. (1993), Ostriker et al. (1995),... -



# 1% distances with Baryonic Acoustic Oscillations



BOSS - Anderson et al (2013)



# Gravitational Lensing: Weak and Strong





#### HST CLASH cluster MACS1206

# Paradigm shifts: a new entity or a new theory?

| Phenomenon                                   | New Entity                                | New theory                                   |
|----------------------------------------------|-------------------------------------------|----------------------------------------------|
| Uranus' orbit                                | Neptune                                   | (Bessel's specific gravity ruled out)        |
| Mercury's orbit                              | (Hypothetical planet<br>Vulcan ruled out) | General Relativity                           |
| Beta decay                                   | Neutrino                                  | (violation of angular<br>momentum ruled out) |
| Galaxy flat rotation curves                  | Dark Matter?                              | Modified Newtonian<br>Dynamics?              |
| Accelerating universe (SN Ia and other data) | Dark Energy?                              | Modified General Relativity?                 |

OL & Michela Massimi (A&G 2014) Lucy Calder & OL (Physics World 2010)



### Weighing the Local Group in the presence of Dark Energy

a =  $-GM/r^2$  +  $\Lambda/3$  r

- At present the Milky Way and Andromeda galaxies are separated by r=770 kpc and are "falling" towards each other at v=109 km/sec.
- Given the age of the universe t=13.8 Gyr and Dark Energy fraction of 70% we find that the mass is
   M = (4.73 +- 1.03) x 10<sup>12</sup> M<sub>sun</sub>
- 13% more than in the absence of Dark Energy

Without A: Kahn & Waltjer (1959), Lynden-Bell (1981),

Raychaudhury & Lynden-Bell (1989)

With Λ: Binney & Tremaine (2008), Partridge, OL & Hoffman (2012), McLeod et al. (2017)

# 30k LG-like pairs in MultiDark simulations



McLeod, Libeskind, Hoffman & OL (arXiv:1606.02694)

# LG mass with Machine Learning: adding velocity shear



$$\Sigma_{ij} = -\frac{1}{2H_0} \left( \frac{\partial v_i}{\partial r_j} + \frac{\partial v_j}{\partial r_i} \right)$$

|                       | 1                                  | $M_{LG} / 10^{12} M_{\odot}$       |                                    |
|-----------------------|------------------------------------|------------------------------------|------------------------------------|
| Model                 | (vdM. 2008)                        | (vdM. 2012)                        | (Sal. 2015)                        |
| $\mathrm{TA}_\Lambda$ | $5.8^{+1.0+4.7}_{-0.9-3.0}$        | $4.7\substack{+0.7+3.9\\-0.6-2.4}$ | $3.8^{+1.1+3.1}_{-0.9-2.0}$        |
| ANN                   | $3.7\substack{+0.3+1.5\\-0.3-1.5}$ | $3.6\substack{+0.3+1.4\\-0.3-1.4}$ | $3.3\substack{+0.6+2.0\\-0.5-1.5}$ |
| ANN + Shear           | $6.1^{+1.1+1.6}_{-1.1-1.8}$        | $4.9\substack{+0.8+1.3\\-0.8-1.4}$ | $3.6^{+1.3+1.7}_{-1.1-1.5}$        |
| Bayesian              | $3.4^{+1.9}_{-1.2}$                | $3.1^{+1.3}_{-1.0}$                | $3.4_{-1.3}^{+2.3}$                |

# Machine Learning in Cosmology

New STFC-funded UCL's Centre for Doctoral Training in Data Intensive Science http://www.hep.ucl.ac.uk/cdt-dis/

(over 30 PhD students; first PhD intake Sep 2017)





**Decision Trees** 



#### Artificial Neural Networks



- DARK ENERGY SURVEY
- Multi-probe approach
   Wide field: Galaxy Clustering, Weak Lensing, Cluster Counts
   Time domain: Supernovae
- Survey strategy
   300 million photometric redshifts (grizY)
   over 5000 deg<sup>2</sup>
   + 3500 SN la (over 27 sq deg fields)
   overlap with VHS + SPT+ OzDES + ...
- Science Verification (SV): 250 sq deg to full depth
- Y1: approx 2000 sq deg 40% of depth. Median seeing FWHM approx 0.9" (as required for WL in riz)
- Y2: approx remaining 3000 sq deg same depth
- Y3: done
- Y4: done
- The DES journey started in 2003
- Nearly about 4/5 of the programme done
- Over 90 DES papers on the arXiv







### Dark Energy Survey Collaboration

#### ~500 scientists from 7 nations

Fermilab, UIUC/NCSA, University of Chicago, LBNL, NOAO, University of Michigan, University of Pennsylvania, Argonne National Lab, Ohio State University, Santa-Cruz/SLAC/Stanford, Texas A&M









28 Feb 2017



|      | Objects                                                                            | As of Dec 2015                                                      | Expected<br>from full<br>5yr DES       |
|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
|      | Galaxies with photo-z<br>(> 10 sigma)                                              | 7M (SV), 100M (Y1+Y2),                                              | 300M                                   |
|      | Galaxies with shapes                                                               | 3M (SV), 80M (Y1+Y2)                                                | 200M                                   |
|      | Galaxy clusters<br>(lambda>5)                                                      | 150K (Y1+Y2)                                                        | 380K                                   |
|      | SN Ia<br>SLSN                                                                      | 1000<br>2 + confirmed + candidates                                  | Thousands<br>15-20                     |
| 0000 | New Milky Way<br>companions                                                        | 17                                                                  | 25                                     |
|      | QSO's at z> 6<br>Lensed QSO's                                                      | <ul><li>1 + confirmed + candidates</li><li>2 + candidates</li></ul> | 375<br>100 (i<21)                      |
|      | Stars<br>(> 10 sigma)                                                              | 2M (SV), 30M (Y1+Y2)                                                | 100M                                   |
|      | Solar System: Trans<br>Neptunian Objects<br>Jupiter Trojans<br>Main Belt asteroids | 32 in SN fields + 2 in the WF<br>19<br>300K (Y1+Y2)                 | 50 + many<br>more in the<br>wide field |

DES Non—DE Overview arXiv:1601.00329

18



### **DES Mass Map from Weak Lensing**





#### DES galaxy and kappa pdf: Log Normal? Or a better model?



 Lognormal better than Gaussian, all scales



 Lognormal better than Gaussian at scales < 20 arcmin (< 5 Mpc/h)</li>

# Testing LCDM with DES Weak Lensing and clustering



Kwan et al. 1604.07871 (dashed line: DES Collaboration 1507.05552) Kacprzak et al. 1603.05040

# What have we learned from DES on Dark Matter? (from galactic to Gpc scales)

- Mass maps from WL
- The shear correlations as expected in LCDM (with sigma\_8 = 0.8)
- Galaxies trace the dark matter fluctuations (esp clusters and voids) from both DES WL and CMB WL
- New 'clustered' 17 MW companions qualitatively fit into the scenario of hierarchical LSS formation
- Dwarfs are DM dominated (e.g. M/L = 470 (M/L) $_{\odot}$  for Ret2)
- But the Nature of the DM still unknown (only upper limits on gamma ray emission)



17 New MW companions from DES (in red) (Drlica-Wagner et al.)





RXJ224: WL DM (contours) vs stellar mass (Melchior et al, Palmese et al) WL by troughs (voids)in the galaxy distribution (Gruen et al.)

## Could a void explain the CMB Cold Spot?

•



 $\delta T = -150 \ \mu K$ , detected by WMAP & Planck 2-3 sigma if a Gaussian fluctuation

- A super-void with  $\delta_m$ = -0.4, R = 220 Mpc/h, z = 0.2 found in the direction of the Cold Spot. e.g. Szapudi et al. (2015), Nadathur et al. (2014)
- But ISW & Rees-Sciama can only account for a fraction of it.

But note the effect of CMB masking, reducing the CS significance from 2.2 to 1.9 sigma (Naidoo, Benoit-Levy & OL, 1703.07894)

### Cold Spot Temperature profiles assuming a multi-void array along the LOS



The tension between the CMB CS and LCDM can be reduced if a multi-void array in the cosmic web is taken into account, but big voids would also be in tension with LCDM

Naidoo, Benoit-Levy, OL (arXiv 1512.02694)

# Mapping voids in the CS direction



- 2dF-VST Atlas (2CSz)
- 7000 spectroscopic redshifts at z < 0.4
- Voids found at z=0.14, 0.26 and 0.30 (and possibly at 0.43)

Mackenzie, Shanks et al. (1704.03814)

These voids are insufficient to explain the CS via ISW in **LCDM** 

### Testing GR: Gravitational redshifts in Clusters



 $\blacktriangleright \Delta v_{\rm gc} = -11^{+7}_{-5} \text{ km/s} \text{ (for } 1 < r_{\rm gc}/r_{200} < 2.5)$ 

Wojtak et al. (2011)

Sadeh, Fen & OL (PRL. 2015)

# Neutrino mass from surveys

- What is the absolute sum of neutrino mass?
  (given the lower limit 0.06 eV from oscillations)
  Upper limit on neutrino mass dropped by a factor
  10 over past 15 years: from about 2eV to 0.2eV.
  Can the mass be MEASURED from surveys?
- What is the hierarchy Normal or Inverted?
- Is N<sub>eff</sub> = 3.046,

or larger (Sterile neutrino /'dark radiation')?

• Is the neutrino its anti-particle?



Structure is 'washed out' with massive neutrinos

# DES: more than Dark Energy

- Solar system objects
- MW, dwarf satellites, LMC
- Galaxy evolution (including biasing and intrinsic alignments)
- Strong lensing
- QSOs (+ lensed QSOs)
- Super-luminous SN
- Gravitational wave follow ups



Low and high hanging fruit

Non-DE Overview (arXiv:1601.000329V2)

# LIGO Gravitational Waves and DES follow ups

#### GW150914



Soares-Santos et al. (2016) Annis et al. (2016) Abbott et al. (2016)



#### LIGO collaboration 2016

# DES LIGO GW follow ups

- So far DES followed up 2 out of the 3 GW events, both BH-BH mergers: no detections
- Current theoretical paradigm is that BH-BH mergers have no EM counterparts, but other models are being considered.
- DES search is sensitive to NS-NS and NS-BH out to 200 Mpc.
- The current main limitation is the poor angular localization (until Virgo and other GW experiments come online).

### The search for Planet 9 (one of the 6 minor planets discovered by DES)



David Gerdes et al, DES TMO WG

### The era of DESI, Euclid, LSST,...





Mayall 4-Meter Telescope





### Dark Energy Spectroscopic Instrument (DESI) – 10 times BOSS



# Summary

- 25 years of ∧+CDM: supported by most observations, but what is ∧ or DE?
- It is important to have new tests of DE (e.g. local dynamics, CMB Cold Spot, gravitational redshift).
- DES does "see" Dark Matter, and good correlations between DM and galaxies.
- DES is on the path to measure DE.
- What are the prospects for a new paradigm shift, beyond Λ+CDM with DESI, LSST, Euclid, WFIRST?

