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Introduction

The CMB

CMB sky as seen by Planck

Dy =¢(t+1)Ce/(2m)

The Planck Collaboration:
Planck results 2015 XIlI
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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
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Introduction

But...

@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.

We see density fluctuations which are further away from us, further in the past.

We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.
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@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

@ The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

@ Not only the number of galaxies but also the volume is distorted.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
outto z ~ 1 or more, they become relevant. Already for SDSS which goes out to
z ~ 0.2 (main catalog) or even z ~ 0.7 (BOSS).

@ But of course much more for future surveys like DES, DESI, Euclid, LSST, SKA
and WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
V4 dzl B l /z dz/
o HZ)  HoJo /Qn(1T+2)3+Q(1 +2')2+

x(z) =

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
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o HZ)  HoJo /Qn(1T+2)3+Q(1 +2')2+

x(z) =

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.

At small redshift all distances (da(z), d.(z), x(2) are d(z) = z/Ho + O(2?), for z < 1.
But at larger redshifts, the distance depends strongly on Qx, Qa,---.

@ Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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What are very large scale galaxy catalogs really measuring?

If we convert the measured
£(0, z1, z2) to a power spectrum, we
have to introduce a cosmology, to
convert angles and redshifts into
length scales.

r(z1,22,0) (=0

\/x$ + X3 — 2x1x2 COS 0.

Zj _dz

Xi = X(Zi) = Jo HD

(Figure by F. Montanari)
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What are very large scale galaxy catalogs really measuring?

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009; J. Yoo 2010, C. Bonvin & RD [arXiv:1105.5080];
Challinor & Lewis, [arXiv:1105:5092] )
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linear order. (See J. Yoo et al. 2009; J. Yoo 2010, C. Bonvin & RD [arXiv:1105.5080];
Challinor & Lewis, [arXiv:1105:5092] )

For each galaxy in a catalog we measure
(6,¢,2) = (n,z) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

A(n,z) = N2 = N(Z)
N(z)
£0,z,7') = (A(n,2)A(n', 2')) n.-n" =cosf.

This quantity is directly measurable = gauge invariant.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations to 1st order

A(n,z) = Dg+¢+\ll+1ﬁ[d>+n-v(v-n)]
(R 2 <v e w)

(Z)/ o {2 X(L XAQ} (@ + V).

( C.Bonvin & RD ’11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations

A(n,z) — -+(53—2)¢+\U—3HV+%[¢+m]
+<%+2( )‘3'{3+5s )(\Hm /dx(<b+\U)>

5s—2

e X{2(¢+\U) [W A(¢>+\U)]].

€(0,2,2') = (A(n,2)A(n', 2")) = 41—” > (20+1)Cu(2,2')Pi(cos )
£

C¢(z,Z') are the angular-redshift power spectra of galaxy catalogs.
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Ci(z,2)

The transverse power spectrum, z’ = z (from Bonvin & RD '11)
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Cosmology with the C,(z,2') and (6, z, Z')

@ The C(z,Z')’s contain all the linear clustering information.
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@ The radial & transversal BAO’s in £(6, z, z') provide an Alcock-Pacziniski test
(Montanari & RD (2012); Lepori et al. (2016) )

@ The off-diagonal Ce(z, z'), z # Z’' can be used to measure the lensing potential
(Montanari & RD (2015)).

@ Lensing is very relevant in C,(z, z') , neglecting it leads to an overestimation of the
neutrino mass (Cardona, RD, Kunz & Montanari (2016) )

@ Relativistic effects can be measured on large scales or with multi-tracer methods,
( Bonvin et al.; Alonso & Ferreira; Di Dioetal. --- )
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CZ(Z) Z,) Vs P(ka K, 2)

Why are we not happy with this?
Ci(z,Z') is in principal observable and contains the full 2-point information about the
galaxy distribution.
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Why are we not happy with this?
Ci(z,Z') is in principal observable and contains the full 2-point information about the
galaxy distribution.

@ To fully profit from the redshift accuracy of a spectroscopic survey we would have
to compute C,(z, z') for about 10* x 10* redshifts. At present speeds this means
$10% x 2min = 6 x 10%sec ~ 200 years. Of course we can parallelize, but for
parameter estimation we need to run this about 10° times...

@ Worse is that a spectroscopic catalog with about 107 galaxies like Euclid would
have only about 1000 galaxies per redshift bin = large shot noise, under-sampling
(1 gal. per 40 square degrees!).

| therefore suggest the following solution:

@ Use the Cy(z, Z') spectra for photometric surveys and for binned spectroscopic
surveys in bins of Az ~ 0.1.

@ Inside each bin, |z — Z’| < Az use the power spectrum P(k, i, Z) .

@ With the information on the truly observed correlation function we can define the
‘observed’ P(k, u, Z).
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The 'observed’ P(k, i, Z)

To go from the angular correlation function to the real space correlation function we
need to assume a cosmology.

f(Z1,Zz,9) = \/X?"‘X% — 2x1x2C€0S 0.

Forzi,z € [z— Az/2,z — Az/2],
wenowsetry =x2 —x1 =~ Z g =purandr = /r2 —rf =ry/1 - p?.
Defining B
Ce(2, 1) = Cu(Z — nH(2)/2,2 + 1 H(2)/2)
and using that
rF— x5 x5

cosf =
2x1x2

= C(I’7 I’H, 2)
we obtain
_ 1 S _
&(rprin2) = - > (20+1)Ce(2, n)Pe(e(r, 1y, 2)
£

The power spectrum is then simply

PObS(k‘lykl’z) _ /dr“dzrlei(kur”+kLbu)€(rH7rlj).
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The 'observed’ P(k, i, Z) (cont.)

P (ky, ki,2) =

2x(2) 1 -
224 ; 1/0 drr? /d1uJo (kﬂﬂ) exp(iky rie) Ce(Z, ru)Pe (e(r, p, 2)) .
- N

This gives the power spectrum from the density field in the shell with inner radius x1
and outer radius 2.
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Angles

The meaning of the angle o with

cosa = u = (xe - x1)/r

2 [g2 _ _4xB-r?
=rVX 2(1+cos 0)

452 +r2 cos® a—2r?

cosf = 4%2—r2cos? «

cos B = B ' S
ry/X5+x%+2x1x2 os 0

1 [(x?ﬂc%)z

_ 2 2
cosf = Zxixz | Poos2p X1 T Xz]

—1_ 8(1—cos® B)r’x?

164 —8x2r2 cos2 B+r4 cos? 3
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Angles (cont.)

(1+c0s 0)'/2(xp—x1)

cosy = e
_ \/r?—2(1—cos 0)x?
=y e
cosf =1— e

252
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The correlation function
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The correlation function (cont.)

. &(r,u) z=1 (den+rsd)
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The correlation function with lensing
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The correlation function with lensing (cont.)

r2£(r)

150

100
r [Mpc/h]

density +lensing
(Tansella et al., in preparation)
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The standard power spectrum

— 000 — pm0sMIn 2 /
— 400676667 — = 0601 y
— = 014333 — pm 067667 k=0.01hibpc

— 0201 pmo73a3
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density+RSD (Tansella et al., in preparation)
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The power spectrum with lensing in flat sky & Limber approximation

Imax A
- 2, = - z
P(ky, ki,2) = 2x (Z)/ dr Cw. (Z,r) cos(hyn)  fmax = 7=y
0 (2)
P(k,u) z=1 (den+len) Flat-Sky
o' — p=0.001 — = 0534333
5000
— p=0.0676667 — = 0.601
oo — 4= 0134333 — = 0.667667
g a0 — p=0.201 — p=0.734333
— = 0.267667 p= 0.801
100 — 4= 0.334333 y= 0.867667
50 — 1= 0.401 p= 0.934333
— = 0.467667

S R . . "

k= k2 +kL? [\Mpc]
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The power spectrum with lensing in flat sky & Limber approximation

_ _ Tmax _ Az
P(ky, ki, 2) = 2x2(2)/ dr Cyzk, (2, ) cos(kyry)  fnax = 7=
0 H(2)
P(den +Ien)_
P (den)
10} 7
k=0.01h/Mpc
05} ]
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Conclusions

@ The angular-redshift power spectra C,(z, z') are directly observable. The provide
an alternative route to measure x = —1/2Aq which also gives v = —1/2 3.
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Conclusions
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an alternative route to measure x = —1/2Aq which also gives v = —1/2 3.

@ At high redshift and especially for radial fluctuations lensing cannot be neglected
in the correlation function/ power spectrum.

@ Neglecting lensing can e.g. ‘fake’ non-minimal neutrino masses.

@ To determine the real space correlation function or the power spectrum a
cosmological model has to be assumed to convert (6, z,z') — r(0, z, Z').

@ Within redshift bins the power spectrum P(k, u, Z) can be determined including all,
lensing and relativistic effects.

@ This is the measured power spectrum for a survey which measures the correlation
function in a redshift bin.

@ The correct masks / windows have to be applied to the density field.

@ Again, for radial fluctuations and at significant redshifts, z > 0.3 or so, lensing
cannot be neglected.
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