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Ruth Durrer (Université de Genève, DPT & CAP) Power Spectrum CosKASI 2017 4 / 28



Introduction

The CMB

CMB sky as seen by Planck

D` = `(`+ 1)C`/(2π)

The Planck Collaboration:
Planck results 2015 XIII

Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3 h Mpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04 h Mpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥ Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2 h Mpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m � W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2 h�1 Mpc, centred on
8.24 h�1 Mpc for pre-reconstruction fits and 4.47 h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

from Anderson et al. ’12

SDSS-III (BOSS)
power spectrum.

Galaxy surveys '
matter density fluctuations,
biasing and redshift space
distortions.
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Introduction

But...
We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
z ' 0.2 (main catalog) or even z ' 0.7 (BOSS).

But of course much more for future surveys like DES, DESI, Euclid, LSST, SKA
and WFIRST.
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Ruth Durrer (Université de Genève, DPT & CAP) Power Spectrum CosKASI 2017 8 / 28



Introduction

But...
We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
z ' 0.2 (main catalog) or even z ' 0.7 (BOSS).

But of course much more for future surveys like DES, DESI, Euclid, LSST, SKA
and WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

χ(z) =

∫ z

0

dz′

H(z′)
=

1
H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩK (1 + z′)2 + ΩΛ

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.

At small redshift all distances (dA(z), dL(z), χ(z) are d(z) = z/H0 +O(z2), for z � 1.
But at larger redshifts, the distance depends strongly on ΩK , ΩΛ, · · · .

Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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What are very large scale galaxy catalogs really measuring?

If we convert the measured
ξ(θ, z1, z2) to a power spectrum, we
have to introduce a cosmology, to
convert angles and redshifts into
length scales.

r(z1, z2, θ)
(K =0)

=
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ.

χi = χ(zi ) =
∫ zi

0
dz

H(z)

(Figure by F. Montanari)
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What are very large scale galaxy catalogs really measuring?

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009; J. Yoo 2010, C. Bonvin & RD [arXiv:1105.5080];
Challinor & Lewis, [arXiv:1105:5092] )

For each galaxy in a catalog we measure

(θ, φ, z) = (n, z) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

∆(n, z) =
N(n, z)− N̄(z)

N̄(z)
.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 , n · n′ = cos θ .

This quantity is directly measurable ⇒ gauge invariant.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations to 1st order

∆(n, z) = Dg + Φ + Ψ +
1
H
[
Φ̇ + n · ∇(V · n)

]

+

( Ḣ
H2 +

2
χ(z)H

)(
Ψ + V · n +

∫ χ(z)

0
dχ(Φ̇ + Ψ̇)

)

+
1

χ(z)

∫ χ(z)

0
dχ
[
2− χ(z)− χ

χ
∆Ω

]
(Φ + Ψ).

( C. Bonvin & RD ’11)
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∆(n, z) =
�� ��bD + (5s − 2)Φ + Ψ− 3HV +

1
H
[
Φ̇ +

�� ��n · ∇(V · n)
]

+

( Ḣ
H2 +

2− 5s
χ(z)H + 5s − fevo

)(
Ψ +

�� ��V · n +

∫ χ(z)

0
dχ(Φ̇ + Ψ̇)

)

+
5s − 2
2χ(z)

∫ χ(z)

0
dχ
[
2(Φ + Ψ)−

�� ��χ(z)−χ
χ

∆Ω(Φ + Ψ)

]
.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 =
1

4π

∑

`

(2`+ 1)C`(z, z′)P`(cos θ)

C`(z, z′) are the angular-redshift power spectra of galaxy catalogs.
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C`(z, z)

The transverse power spectrum, z′ = z (from Bonvin & RD ’11)
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Cosmology with the C`(z, z ′) and ξ(θ, z, z ′)

The C`(z, z′)’s contain all the linear clustering information.

The radial & transversal BAO’s in ξ(θ, z, z′) provide an Alcock-Pacziniski test
(Montanari & RD (2012); Lepori et al. (2016) )

The off-diagonal C`(z, z′), z 6= z′ can be used to measure the lensing potential
(Montanari & RD (2015)).

Lensing is very relevant in C`(z, z′) , neglecting it leads to an overestimation of the
neutrino mass (Cardona, RD, Kunz & Montanari (2016) )

Relativistic effects can be measured on large scales or with multi-tracer methods,
( Bonvin et al.; Alonso & Ferreira; Di Dio et al. · · · )
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Ruth Durrer (Université de Genève, DPT & CAP) Power Spectrum CosKASI 2017 15 / 28



Cosmology with the C`(z, z ′) and ξ(θ, z, z ′)

The C`(z, z′)’s contain all the linear clustering information.

The radial & transversal BAO’s in ξ(θ, z, z′) provide an Alcock-Pacziniski test
(Montanari & RD (2012); Lepori et al. (2016) )

The off-diagonal C`(z, z′), z 6= z′ can be used to measure the lensing potential
(Montanari & RD (2015)).

Lensing is very relevant in C`(z, z′) , neglecting it leads to an overestimation of the
neutrino mass (Cardona, RD, Kunz & Montanari (2016) )

Relativistic effects can be measured on large scales or with multi-tracer methods,
( Bonvin et al.; Alonso & Ferreira; Di Dio et al. · · · )
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C`(z, z ′) vs P(k , µ, z̄)

Why are we not happy with this?
C`(z, z′) is in principal observable and contains the full 2-point information about the
galaxy distribution.

To fully profit from the redshift accuracy of a spectroscopic survey we would have
to compute C`(z, z′) for about 104 × 104 redshifts. At present speeds this means
1
2 108 × 2min = 6× 109sec ' 200 years. Of course we can parallelize, but for
parameter estimation we need to run this about 105 times...

Worse is that a spectroscopic catalog with about 107 galaxies like Euclid would
have only about 1000 galaxies per redshift bin⇒ large shot noise, under-sampling
(1 gal. per 40 square degrees!).

I therefore suggest the following solution:

Use the C`(z, z′) spectra for photometric surveys and for binned spectroscopic
surveys in bins of ∆z ∼ 0.1.

Inside each bin, |z − z′| < ∆z use the power spectrum P(k , µ, z̄) .

With the information on the truly observed correlation function we can define the
’observed’ P(k , µ, z̄).
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The ’observed’ P(k , µ, z̄)

To go from the angular correlation function to the real space correlation function we
need to assume a cosmology.

r(z1, z2, θ) =
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ .

For z1, z2 ∈ [z̄ −∆z/2, z̄ −∆z/2],
we now set r‖ = χ2 − χ1 ' z2−z1

H(z̄)
= µr and r⊥ =

√
r 2 − r 2

‖ = r
√

1− µ2 .

Defining
C̃`(z̄, r‖) ≡ C`(z̄ − r‖H(z̄)/2, z̄ + r‖H(z̄)/2)

and using that

cos θ =
r 2 − χ2

1 − χ2
2

2χ1χ2
= c(r , r‖, z̄)

we obtain
ξ(r‖, r⊥, z̄) =

1
4π

∑

`

(2`+ 1)C̃`(z̄, r‖)P`(c(r , r‖, z̄))

The power spectrum is then simply

Pobs(k‖, k⊥, z̄) =

∫
dr‖d

2r⊥ei(k‖r‖+k⊥·br⊥)ξ(r‖, r⊥, z̄) .
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The ’observed’ P(k , µ, z̄) (cont.)

Pobs(k‖, k⊥, z̄) =

∑

`

2`+ 1
2

∫ 2χ(z̄)

0
drr 2
∫ 1

−1
dµJ0

(
k⊥r

√
1−µ2

)
exp(ik‖rµ)C̃`(z̄, rµ)P` (c(r , µ, z̄)) .

This gives the power spectrum from the density field in the shell with inner radius χ1

and outer radius χ2.

χ2

χ1
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Angles

The meaning of the angle α with

cosα = µ = (χ2 − χ1)/r

= 2
r

√
χ̄2 − 4χ̄2−r2

2(1+cos θ)

cos θ = 4χ̄2+r2 cos2 α−2r2

4χ̄2−r2 cos2 α

(2.28, 18.46)
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f1

g1

h1

i1

F G

HI

(2.33, 19.19)

(31.86, 2.72)

f1

g1i1

F G

HI

(2.33, 19.19)

(31.86, 2.72)

f1

g1

F G

HI

cosβ =
χ2

2−χ2
1

r
√
χ2

2+χ2
1+2χ1χ2 cos θ

cos θ = 1
2χ1χ2

[
(χ2

1−χ2
2)2

r2 cos2 β
− χ2

1 − χ2
2

]

= 1− 8(1−cos2 β)r2χ̄2

16χ̄4−8χ̄2r2 cos2 β+r4 cos2 β

(2.28, 18.46)

(32.75, 2.28)

f1

g1

h1

i1

F G

HI

(2.33, 19.19)

(31.86, 2.72)
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g1i1
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HI

(2.33, 19.19)

(31.86, 2.72)

f1

g1

F G

HI
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Angles (cont.)

cos γ = (1+cos θ)1/2(χ2−χ1)√
2r

=

√
r2−2(1−cos θ)χ̄2

r

cos θ = 1− r2(1−cos2 γ)

2χ̄2 .

(2.28, 18.46)
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HI
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The correlation function
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The correlation function (cont.)
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The correlation function with lensing
5

(a) (b)

(c) (d)

FIG. 3: z̄ = 0.35: (a) Contours of constant ξobs (solid) and ξgg (dotted), left to right: 0.01 (magenta), 0.002 (cyan), 0.001
(black; triple contours), 0.0005 (blue), 0 (red), -0.0001 (green). The LOS separation is δχ; the transverse separation is δx⊥.
ξgg is isotropic but ξobs is not. (b) ξgg (black dashed), 2ξgµ (sloped red dotted), ξµµ (flat red dotted) and ξobs (red solid) for a
separation vector oriented along the LOS. The inset shows the ratio ξobs/ξgg for several other orientations (solid); dot-dashed
line shows the ratio of the respective monopoles. Note δx2 = δχ2 + δx2

⊥. (c) A zoomed in view of ξgg, ξobs, δx
2ξgg, δx2ξobs

around the baryon wiggle for a separation vector oriented along the LOS. Note how dangerous it is to use δx2ξobs to locate the
baryon peak. (d) Lower panel shows the monopole of ξobs; upper panel shows the difference monopole ξobs − ξgg for several
different values of (5s − 2)/b. Unless otherwise stated (as in panel d), (5s − 2)/b = 1 throughout. All ξ’s are normalized by b2.

We can summarize the distinctive lensing induced
anisotropy to the observed correlation as follows:

ξobs(δχ, δx⊥) = ξgg(
√

δχ2 + δx2
⊥) (15)

+f(δx⊥)δχ + g(δx⊥)

where δχ and δx⊥ are the LOS and transverse
separations respectively, fδχ represents the galaxy-

magnification correlation and g represents the
magnification-magnification correlation. Here, f
and g are functions of the transverse separation only,
and are determined by the galaxy-mass and mass-mass
power spectra. This distinctive form of the anisotropy
allows us in principle to separately measure ξgg , f and g,
from which we can infer the galaxy-galaxy, galaxy-mass
and mass-mass power spectra. For instance, at any given

(from Hui et al. 0706.1071)
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The correlation function with lensing (cont.)
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The standard power spectrum
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The power spectrum with lensing in flat sky & Limber approximation

P(k‖, k⊥, z̄) = 2χ2(z̄)

∫ rmax

0
dr‖Cχ(z̄)k⊥(z̄, r‖) cos(k‖r‖) rmax =

∆z
H(z̄)
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The power spectrum with lensing in flat sky & Limber approximation

P(k‖, k⊥, z̄) = 2χ2(z̄)

∫ rmax

0
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Conclusions

The angular-redshift power spectra C`(z, z′) are directly observable. The provide
an alternative route to measure κ = −1/2∆ψ which also gives γ = −1/2 /∂2ψ.

At high redshift and especially for radial fluctuations lensing cannot be neglected
in the correlation function/ power spectrum.

Neglecting lensing can e.g. ’fake’ non-minimal neutrino masses.

To determine the real space correlation function or the power spectrum a
cosmological model has to be assumed to convert (θ, z, z′)→ r(θ, z, z′).

Within redshift bins the power spectrum P(k , µ, z̄) can be determined including all,
lensing and relativistic effects.

This is the measured power spectrum for a survey which measures the correlation
function in a redshift bin.

The correct masks / windows have to be applied to the density field.

Again, for radial fluctuations and at significant redshifts, z > 0.3 or so, lensing
cannot be neglected.

————-
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