Bayesian Inference from CMB sky maps beyond Statistical Isotropy

CosKASI Conference 2017 Cosmological quests for the next decade

> KASI, Daejeon, Korea Apr. 17-21, 2017

Tarun Souradeep IUCAA, Pune, India

Suvodip Mukherjee, Santanu Das, Aditya Rotti, Nidhi Pant, Pavan Aluri, Shabbir Shaikh, Rajorshi Chanda, Debabrata Adak

50 YEARS OF DISCOVERY

Half a century after astronomers first detected the cosmic microwave background (CMB) radiation, it continues to be their clearest window on the early Universe.

1946-1948

Several scientists predict that the Universe should be filled with remnant radiation from the Big Bang, and that this would have a temperature of just a few kelvin.

Arno Penzias and Robert Wilson detect the CMB radiation and measure its temperature to be roughly 3 kelvin.

1992

COBE data reveal minuscule variations in the CMB's temperature, a sign of density fluctuations in the early Universe that would later condense into galaxies.

2003

NASA's Wilkinson Microwave Anisotropy Probe (WMAP) charts the CMB in increased detail.

2013

Europe's Planck satellite picks up first hints of gravitational waves from the infant Universe.

1990

NASA's Cosmic Background Explorer (COBE) satellite measures the CMB from space and pins its temperature at 2.725 kelvin. 1999

1

Balloon-borne detectors characterize CMB fluctuations accurately enough for scientists to do a statistical analysis, which reveals information on the Universe's geometry and energy content.

2014

The BICEP2 experiment at the South Pole detects strong evidence of gravitational waves in the CMB's polarization.

2020s

Next-generation CMB observatories could use the radiation to track galaxy evolution and probe the earliest instants of the Universe.

CMB@IUCAA: CMBAns Boltzmann code by Santanu Das

6-Parameter ΛCDM

Parameter	Planck TT+lowP+lensing	
$\Omega_{ m b}h^2$	0.02226 ± 0.00023	1%
$\Omega_{ m c}h^2$	0.1186 ± 0.0020	1.7%
$100\theta_{\rm MC}$	1.04103 ± 0.00046	0.04%

'Standard' cosmological model: Flat, ACDM with nearly Power Law (PL) primordial power spectrum

 0.01027 ± 0.00014

 $r_{\rm drag}$.

1.4%

Paradigm of Statistical isotropy? - a predicate of the Cosmological principle

Cosmic Hemispherical Asymmetry

'Statistical Isotropy'

Statistical measures of the CMB sky fluctuations are invariant under rotations → Homo. Random field on a sphere

$$\langle a_{lm} a^*_{l'm'} \rangle = C_l \, \delta_{ll'} \delta_{mm'}$$

(Bond, Pogosyan & Souradeep 1998, 2002)

BipoSH Spectra : *Natural* generalization of C_{ℓ} Amir Hajian & Souradeep 2003

Harmonic decomposition of map (temp, Pol)

Harmonic decomposition of non SI correlation.

BipoSH Spectra : Natural generalization of C_{ℓ}

Bipolar Spherical Harmonic representation

Amir Hajian & Souradeep 2003

$$C(n_1 \bullet n_2) = \sum \frac{2l+1}{4\pi} C_l P_l(n_1 \bullet n_2)$$

$$C_{\ell} = \langle a_{\ell m} a_{\ell m}^* \rangle$$

$$C(\hat{n}_1, \hat{n}_2) = \sum_{l_1 l_2 LM} A_{l_1 l_2}^{LM} \{ Y_{l_1}(\hat{n}_1) \otimes Y_{l_2}(\hat{n}_2) \}_{LM}$$

Bipolar spherical harmonics.

BipoSH A Coefficients

$$\sum_{l_{1}l_{2}}^{LM} = \sum_{m} \left\langle a_{l_{1}m}^{*} a_{l_{2}m+M}^{T, E, B, \dots} \right\rangle C_{l_{1}m_{1}l_{2}m_{+M}}^{LM}$$

Linear combination of off-diagonal elements BipoSH provide complete representation of SH space correlation matrix

Beyond C_l : Patterns in CMB

Sources of SI violation:

- Global topology
- Global anisotropy/rotation
- Breakdown of global symmetries, Magnetic field,...
- Doppler boost: Local motion wrt CMB
- Weak Lensing: Scalar (LSS) & tensor (GW)

Observational artifacts:

- Foreground residuals
- Inhomogeneous noise, coverage
- Non-circular beam response function

BipoSH spectra measurements WMAP-7 : Bennet et al. 2010

WMAP-7 beams

(Nidhi Joshi, Santanu Das, Aditya Rotti, Sanjit Mitra, TS : A&A 2016)

Weak Lensing

SI violation : Deflection field

 $T(\hat{n}') = T(\hat{n} + \vec{\Theta}) = T(\hat{n}) + \vec{\Theta} \bullet \vec{\nabla} T(\hat{n})$

 $\vec{\Theta} = \vec{\nabla}\phi(\hat{n}) + \vec{\nabla} \times \Omega(\hat{n})$ $= \nabla_i \phi(\hat{n}) + \varepsilon_{ij} \nabla_j \Omega(\hat{n})$ Gradient Curl WL:scalar WL: tensor/GW

Deflection field: Even & Odd parity BipoSH

Book, Kamionkowski & Souradeep, PRD 2012

$$A_{ll'}^{(+)LM} = \phi_{LM} \left[\frac{C_l G_{l'l}^L}{\sqrt{l'(l'+1)}} + \frac{C_{l'} G_{ll'}^L}{\sqrt{l(l+1)}} \right] \quad \text{WL: scalar}$$

$$A_{l_2l_1}^{(-)LM} = i\Omega_{LM} \left[\frac{C_l G_{l'l}^L}{\sqrt{l'(l'+1)}} - \frac{C_{l'} G_{ll'}^L}{\sqrt{l(l+1)}} \right] \quad \text{WL: tensor}$$

BipoSH: Recovery of WL power spectrum

Statistical Isotropy violation in Reionization ?

- First brightest objects were formed at redshift z≈30 and start reionizing the surrounding medium. The universe becomes fully reionized by z ≈6.
- Likely brightest objects were not formed isotropically. They reionize nearby regions earlier compared to the regions far away → anisotropic reionization.

$$\widetilde{T}(n) = T_0 + \triangle T e^{-\tau(n)}$$

$$(Q \pm iU)(\widehat{\mathbf{n}}) = e^{-\tau(\widehat{\mathbf{n}})}(Q \pm iU)^{(\mathrm{rec})}(\widehat{\mathbf{n}})$$

CMB fluctuations in a moving reference frame

Observer is moving at a velocity, v=380km/s v/c= 1.23x10⁻³

SI violation Doppler boost: BipoSH

PLANCK

Cosmic Hemispherical Asymmetry

Cosmic Hemispherical Asymmetry

Need non-SI simulations to perform statistical analysis

> NON-ALIGNED: Direct

is not aligned with the Ga

Salient features of Jemispherical Asymmet

> Essential aspects to understand the "Pesky CHA"

Implications of the asymmetry on the derived cosmological parameters

b = -18°) ± 30°, which

>ACHROMATIC: similar signal frequencies (100, 143, 217 GHz). 7 arigin from come residual foregro

ed ar

atio

e reatures reduce the chance of its d contaminations.

To understand the origin of CHA

e observed excess power is of ular scales (I<70). Hence, the a ienon. To find other cosmological probes to CHA

Modulation model of SI violation

 $\Delta T(\hat{n}) = [1 + M(\hat{n})]\Delta T^{\mathrm{SI}}(\hat{n})$

M(n): modulation field searched $M(\hat{n}) = \sum_{LM} m_{LM} Y_{LM}(\hat{n})$

Focus only on L=1 Dipole Modulation in 2014

$$\Delta T(\hat{n}) = [1 + A \ (\hat{p}.\hat{n})] \ \Delta T^{\mathrm{SI}}(\hat{n})$$

$$A = 1.5\sqrt{\frac{m_1}{\pi}}$$

$$m_1 = \frac{|m_{10}|^2 + |m_{11}|^2 + |m_{1-1}|^2}{3}$$

Planck 2016 SMICA

Planck 2014 SMICA

Direction deduced from BipoSH Analysis

Planck 2015 XVI: Isotropy & Statistics

31

Probability distribution

$$\begin{split} P(\mathbf{S}, \mathbf{a} | \mathbf{d}) &= \frac{1}{\sqrt{|\mathbf{N}||\mathbf{S}|} (2\pi)^n} \exp{-\frac{1}{2} \left[(\mathbf{d} - \mathbf{a})^{\dagger} \mathbf{N}^{-1} (\mathbf{d} - \mathbf{a}) + \mathbf{a}^{\dagger} \mathbf{S}^{-1} \mathbf{a} \right]} \\ P(C_l, m_{10}, m_{11}, m_{1-1} | \mathbf{d}) &= \frac{1}{\sqrt{|\mathbf{N} + \mathbf{S}|} (2\pi)^{n/2}} \exp{-\frac{1}{2} \left[\mathbf{d}^{\dagger} (\mathbf{S} + \mathbf{N})^{-1} \mathbf{d} \right]} \\ \mathbf{S}(C_l, m_{10}, m_{11}, m_{1-1}) & \text{- parameter dependence of covariance matrix} \end{split}$$

Under the assumption that the noise matrix is diagonal, if S + N has following form:

$${f S}+{f N}={f D}+m_{10}{f O}_{f 1}$$
 D: Diagonal of the matrix S + N
O1: Offdiagonal part of the matrix S without m10

 $P(C_l, m_{10} | \mathbf{d}) = \frac{1}{\sqrt{|\mathbf{D}|} (2\pi)^{n/2}} \exp\left[-\frac{1}{2} \mathbf{d}^{\dagger} \mathbf{D}^{-1} \mathbf{d}\right] \exp\left[-\frac{(m_{10} - \mu)^2}{2\sigma^2}\right] \exp\left[\frac{\mu^2}{2\sigma^2}\right]$

n is number of data points.

Conditional Mean:
$$\mu = \frac{d^{\dagger} D^{-1} O_1 D^{-1} d}{tr[(D^{-1} O_1)^2]} \left[2 \frac{d^{\dagger} (D^{-1} O_1)^2 D^{-1} d}{tr[(D^{-1} O_1)^2]} - 1 \right]^{-1}$$

$$\sigma^{2} = \frac{2}{tr[(D^{-1}O_{1})^{2}]} \left[2 \frac{d^{\dagger} (D^{-1}O_{1})^{2} D^{-1} d}{tr[(D^{-1}O_{1})^{2}]} - 1 \right]^{-1}$$

Conditional variance:

Bayesian inference on the sphere beyond statistical isotropy

Santanu Das, B.Wandelt, TS JCAP 2015 (ArXiv: 1509.07137)

Test on Stat. Isotropic maps: \mathcal{C}_{ℓ}

... so, the method does as well (or even better) than Gibbs Sampling

Tests on SI maps: BipoSH

.... with complete posterior distributions

| = 7 l = 700 l = 70 C 0 $(l(l+1)C_l/2\pi)_{l=7}$ $(l(l+1)C_l/2\pi)_{l=70}$ $(l(l+1)C_l/2\pi)_{l=700}$ **BipoSH** L = 1-400 -300 -200 -100 -600 -400 -200 $(l(l+1)\tilde{A}_{ll-1}^{10}/2\pi)_{l=7}$ $(l(l+1)\tilde{A}_{ll-1}^{10}/2\pi)_{l=70}$ $(l(l+1)\tilde{A}^{10}_{ll-1}/2\pi)_{l=700}$ **BipoSH** L= 2 0L_____ -800 -80 -200 -20 -600 -400 -600 -400 -200 -60 -40 $(l(l+1)\tilde{A}_{ll}^{20}/2\pi)_{l=7}$ $(l(l+1)\tilde{A}_{ll}^{20}/2\pi)_{l=70}$ $(l(l+1)\tilde{A}_{ll}^{20}/2\pi)_{l=700}$

Bayesian HMC : Doppler boost

Used simulated **Doppler boosted** CMB maps using CoNIGS (Suvodip Mukherjee)

Posterior distribution of Boost parameter

L=1

Bayesian HMC : CHA

$$\begin{split} \Delta T(\hat{n}) &= \left[1 + A \ (\hat{p}.\hat{n})\right] \ \Delta T^{\text{SI}}(\hat{n}) & \text{U}_{\text{D}}\\ \text{BipoSH Spectra} & A = 1.5 \sqrt{\frac{m_1}{\pi}} & \text{C}\\ \text{I}_{1} &= \frac{|m_{10}|^2 + |m_{11}|^2 + |m_{1-1}|^2}{3} \end{split}$$

Posterior distribution of m_{10} , m_{11} , m_{1-1} parameters

L=1

Distribution of m_{10} and m_{11} for Scale Independent Dipole Modulation map

sed simulated oppler boosted MB maps using oNIGS Suvodip Mukherjee)

Cosmic Hemispherical asymmetry

CHA: An enigma

Many Theoretical ideas

Inflationary paradigm

Erickcek, Kamionkowski & Carroll, (2008); Erickcek, Carroll & Kamionkowski, (2008); Donoghue, Dutta & Ross (2009); Erickcek, Hirata & Kamionkowski, (2009); Mazumdar, Wang, (2013); McDonald, (2014); Abolhasani et al., (2014); Liu, Guo & Piao (2014); Jazayeri,(2014); Liu et al. (2014).; Lyth, (2015); **Mukherjee & Souradeep (2015),** Kothari, Rath & Jain, (2015); Kothari et al., (2015); Wang et al. (2015)

Dark Energy

Perivolaropoulos (2014); Dai et al. (2013)

Cosmic String

Ringeval et al. (2016)

Observational Claims

WMAP

F. K. Hansen et al. (2004).
H. K. Eriksen et al., (2004).
Godan (2007)
Hoftuft et al (2009)

Planck F. Paci et al. (2013) Flender et al. (2013) Planck-13 (2014)

Y. Akrami et al., (2014)

Quartin et al. (2015) S. Aiola et al. (2015)

Planck-15, (2016)

Fast roll inflation with initial inhomogeneities

Ph.D. Thesis Defence

$$\begin{split} H(\hat{n},\tilde{\Phi}) =& H_b(\Phi)[1+\chi(\tilde{\Phi})\,\hat{p}.\hat{n}],\\ H'(\hat{n},\tilde{\Phi}) =& H'_b(\Phi)[1+\xi(\tilde{\Phi})\,\hat{p}.\hat{n}].\\ \chi =& 2\sqrt{\pi\epsilon_H}\frac{\delta\Phi}{m_{pl}},\\ \xi =& 2\sqrt{\pi}\frac{\eta_H}{\sqrt{\epsilon_H}}\frac{\delta\Phi}{m_{pl}}. \end{split}$$

$$=P_{s,t}(k)\left[1+D^{s,t}\hat{p}.\hat{n}+Q^{s,t}(\hat{p}.\hat{n})^2
ight]$$
, In Single field inflation model, effect in tensor anisotropies is <0.05%
 $D^s(\tau) = 4\chi - 2\xi, \ Q^s(\tau) = 6\chi^2 - 8\chi\xi + 3\xi^2, \ D^t(\tau) = 2\chi \ \text{and} \ Q^t(\tau) = \chi^2$

21-Oct-2016

CHA in B modes from scalar perturbations : An inevitable window

Mukherjee and Souradeep Phys. Rev. Lett. 116, 221301 (2016)

CHA in B modes from scalar perturbations

Mukherjee and Souradeep Phys. Rev. Lett. 116, 221301 (2016)

$$\begin{split} A_{ll+1|BB}^{10} &= & \text{Mukherjee and Souradeep} \\ Phys. Rev. Lett. 116, 221301 (2016) \\ & \sum_{Jl_1l_2}^{(l_1)_{max}} \frac{\alpha_{l_1}^{10}}{2\sqrt{4\pi}} \Big[C_{l_1}^{\Psi\Psi} \big[C_{l_2}^{EE} - (-1)^{l+1+l_1+l_2} C_{l_2}^{EE} \big] \\ & \Big[M_{Jl_2l} M_{l_1l_2l+1} C_{10l_10}^{10} C_{J2l_2}^{l_2} 2C_{l_10l_2}^{l+12} \Pi_{l_1J_l2l} \mathcal{W}_{l_1l_2l+1J1l} \Big] + \\ & C_{l_1}^{\Psi\Psi} \big[C_{l_2}^{EE} - (-1)^{l+1+J+l_2} C_{l_2}^{EE} \big] \\ & \Big[M_{l_1l_2l} M_{Jl_2l+1} C_{10l_10}^{J0} C_{l_2l_2}^{l_2} 2C_{J0l_2}^{l+12} \Pi_{l_1Jl_2l} \mathcal{W}_{l_1l_2lJ1l+1} \Big] \Big] + \\ & C_{l_1}^{(\Psi\Psi} \big[C_{l_2}^{EE} - (-1)^{l+1+l_1+l_2} C_{l_2}^{EE} \big] \\ & \Big[M_{l_1l_2l} M_{Jl_2l+1} C_{10l_2}^{J0} 2C_{l_10J_2}^{l+2} 2\Pi_{l_1Jl_2l_2} \mathcal{W}_{l_1l_2lJ1l+1} \Big] \Big] + \\ & C_{l_1}^{(\Psi\Psi} \big[C_{l_2}^{EE} - (-1)^{l+1+l_1+l_2} C_{l_2}^{EE} \big] \\ & \Big[M_{l_1l_2l} M_{l_1l_2l+1} C_{10l_22}^{J2} C_{l_10J_2}^{l+2} 2\Pi_{l_1l_1Jl_2} \mathcal{W}_{l_2l_1l+1J1l} \Big] + \\ & C_{l_1}^{(\Psi\Psi} \big[C_{l_2}^{EE} - (-1)^{l+1+l_1+J} C_{l_2}^{EE} \big] \\ & \Big[M_{l_1l_2l} M_{l_1l_2l+1} C_{10l_22}^{J2} C_{l_10J_2}^{l+2} 2C_{l_10J_2}^{l+12} \Pi_{l_1l_1Jl_2} \mathcal{W}_{l_2l_1l_2l+1} \Pi_{l_1l_2l+1} \big] \Big], \\ & A_{ll+1|BB}^{10} = \sum_{l_1}^{(l_1)_{max}} \alpha_{l_1}^{10} S_{l_1l+1l_1}^{l}, \\ & \text{where, } \mathcal{W}_{l_2l_1lJ_1l'} = \begin{pmatrix} l_2 & l_1 & l' \\ l & 1 & J \end{pmatrix}; M_{l_1l_2l} = \frac{1}{2\sqrt{4\pi}} \big[l_1(l_1+1) + l_2(l_2+1) - l(l+1) \big]; \\ & \Pi_{l_1l_2\dots l_n} = \sqrt{(2l_1+1)(2l_2+1)\dots(2l_n+1)} \\ & \text{Ph.0. Thesis Defence} \end{split}$$

CHA in B modes from scalar perturbations

CHA in B modes at small angular scales

A new window to put bounds on CHA of primordial origin

Mukherjee and Souradeep Phys. Rev. Lett. 116, 221301 (2016)

Extent of CHA in lensing (I _{max})	Cumulative noise	Signal to Noise Ratio (SNR)
25	0.054	1.28
30	0.0456	1.53
40	0.034	2.04
70	0.02	3.46

